
Joint Optimization of Task Offloading and Resource
Allocation in Tactical Edge Networks

Zhaofeng Zhang, Xuanli Lin, Guoliang Xue, Yanchao Zhang, Kevin S. Chan

Abstract—Recent years have witnessed explosive growth in
deploying IoT devices over tactical edge networks. Due to the
limited computing resources of local edge devices, there is an
urgent need to offload the computing tasks to edge servers. A
central question here is “How can we design offloading strategies
and resource allocation plans so that all the computing resource
constraints of servers and communication constraints between
devices and servers are satisfied?” In this paper, we formulate
the problem of jointly optimizing task offloading and resource
allocation (JOA) in tactical edge networks as maximizing the total
task completion rewards subject to various resource constraints.
We design two algorithms to solve the JOA problem. The first
is an exact algorithm using a search tree, where the branch-
cutting criterion is well-crafted based on the property of the
JOA problem. The second is a meta-heuristic algorithm based
on the simulated annealing approach. We conduct numerical
evaluations and demonstrate that the proposed exact algorithm
can obtain the optimal task offloading strategy and resource
allocation plan. The heuristic algorithm can efficiently provide
competitive performance.

1. INTRODUCTION

With the rapid advancement of mobile computing and the
emergence of Artificial Intelligence of Things (AIoT), millions
of IoT devices are now deployed across tactical edge networks,
generating vast amounts of data on the battlefield. However,
advancing AI capabilities to the edge of tactical mobile
computing ecosystem remains a complex challenge due to
resource constraints of computing, network, and environment
dynamics. Traditionally, the prevailing approach has been to
transmit all data from IoT devices to cloud data centers for
analysis. However, such data transfer operates with limited
resources (e.g., limited power, memory, and network band-
width) in a dynamic and adversarial environment, which may
lead to tremendous transmission delays. Additionally, there are
serious concerns about potential privacy breaches during data
transfer. An alternative solution involves on-device analytics,
where AI applications are executed directly on IoT devices,
allowing for localized processing of data generated by these
devices [3], [6], [11]. Despite this, the approach encounters

Zhaofeng Zhang, Xuanli Lin, Guoliang Xue, and Yanchao Zhang
are affiliated with Arizona State University and CoE-FutureG. Email:
{xlin54, zzhan199, xue, yczhang}@asu.edu. Kevin S. Chan
is affiliated with DEVCOM US Army Research Laboratory. Email:
kevin.s.chan.civ@army.mil. Research was sponsored by the DEV-
COM Army Research Laboratory and was accomplished under Cooperative
Agreement Number W911NF-23-2-0225. The views and conclusions con-
tained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of DEVCOM
Army Research Laboratory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

significant limitations, particularly regarding inadequate per-
formance and energy efficiency. Many AI applications require
substantial computational resources, exceeding the capabilities
of resource-constrained and energy-limited IoT devices [12],
particularly in the demanding environment of the battlefield.
Therefore, an urgent need is to offload these computing tasks
to edge servers. On one hand, edge servers always have
more powerful computing capacities than resource-constrained
local devices. On the other hand, the communication time
of offloading to the edge servers will significantly decrease
compared to multi-hop wireless transmission to the cloud.

Nevertheless, the co-design of offloading strategies and
resource allocation plans has not been well understood, espe-
cially for the tactical edge networks. In particular, local devices
always only have limited power supplies. That is to say, the
transmit power of each device needs to be carefully quanti-
fied to satisfy the sophisticated battlefield requirements (e.g.,
achieving minimal signal-to-interference-plus-noise ratio and
not exceeding the maximum transmission time). In addition,
each edge server has limited computing resources. Hence, a
proper task offloading strategy must ensure that each edge
server’s computing capacities are not exceeded. To address the
above issues, in this work, we seek to answer the following
critical question: “How can we design offloading strategies
and resource allocation plans so that all the computing
resource constraints of servers and communication constraints
between devices and servers are satisfied?”

One recent work [7] studies the problem of jointly op-
timizing task offloading and resource allocation (JOA) in
tactical edge networks and formulates it as a multi-objective
optimization problem. Motivated by this work, we take a step
further and formulate this problem as maximizing the total task
completion rewards subject to various resource constraints,
including servers’ computing capacities, local devices’ trans-
mit power, and tasks’ completion deadlines. Although this
problem is challenging to solve directly since it is a mixed non-
linear integer programming problem, we observe two critical
properties by exploiting its structure. The first property reveals
that, given an infeasible offloading policy, the new offloading
policy will still be infeasible if an extra task is added. Then,
we propose an exact algorithm to solve the JOA problem using
a search tree where the cutting criterion is based on the above
observation. The second property is that an arbitrary offloading
policy’s feasibility can be determined efficiently by solving a
linear programming problem. Based on this, we further design
a heuristic algorithm using the simulated annealing approach
to solve the JOA problem.

1

The main contributions of this paper are the following:
• We formulate the problem of jointly optimizing task of-

floading and resource allocation in tactical edge networks
as maximizing the total task completion rewards subject
to various resource constraints.

• We design two algorithms to solve the JOA problem
respectively. The first is an exact algorithm using a search
tree where the branch-cutting criterion is based on the
property of the JOA problem. The second is a heuristic
algorithm based on the simulated annealing approach.

• We conduct numerical evaluations and demonstrate that
the proposed exact algorithm can obtain the optimal
task offloading strategy and resource allocation plan.
The heuristic one can provide competitive performance
efficiently.

We present the system model in §2 and formulate the JOA
problem in §3. We present exact and heuristic algorithms in
§4 and §5, respectively. We present evaluation results in §6
and conclude the paper in §7.

2. SYSTEM MODEL

We consider a multi-server tactical edge network where each
edge server can provide computation offloading services to
resource-constrained local mobile users, such as soldiers’
wearable devices. Typically, each server is endowed with mod-
erate computing capabilities allocated by the network operator
and is capable of wireless communication with mobile users.
Local users can offload machine learning (ML) inference tasks
to an edge server. We assume that there are a set U of
N users U = {u1, u2, ..., uN} and a set S of M servers
S = {s1, s2, ..., sM}. We describe the system model of user
computation tasks, task uploading transmissions, and server
computing resources in the following subsections.

A. User Computation Tasks

Each user un ∈ U has the following attributes:
• Position: The user un’s position is represented by a

coordinate (xn, yn) in two-dimensional Euclidean space.
• Deadline: The ML task’s deadline for user un is δn.
• Data size: Dn specifies the input data required to transfer

(including system settings, program codes, and input
parameters) from the local user un to the server.

• ML algorithm and its accuracy requirement: Each
user can choose one ML algorithm k from K
candidates. The user un’s ML algorithm k (k = 1, ...,K)
is characterized by a 4-tuple of parameters,
⟨CPUn,k,RAMn,k, τ

exe
n,k, rn,k⟩, in which CPUn,k is

a positive integer indicating the user un’s required
number of CPU core for processing ML algorithm k
on the server’s virtual machine, RAMn,k is a positive
integer indicating the user un’s required RAM for
running ML algorithm k on the server’s virtual machine,
and τ exe

n,k denotes the algorithm k’s execution time when
user un runs it, and rn,k is a positive integer denoting
the reward the user un earns when the algorithm k is
selected. Although we do not consider that the task

can be processed on the local device, our proposed
approaches can still be applied to this setting.

B. Communication during Task Offloading

When user un offloads its task associated with the ML
algorithm k to the server sm, the resulting delay encompasses:
(i) The communication time τ up

n,m required for transmitting the
input to the edge server via the uplink, (ii) The execution time
τ exe
n,k entailed in processing the task at the edge server, and

(iii) The communication time is used to transmit the output
from the edge server back to the user via the downlink. Given
that the output size, typically represented by the ML inference
result, tends to be considerably smaller than the input size,
and further considering the higher data rate of the downlink
compared to the uplink, we choose to disregard the delay
associated with transmitting the output [2].

Here, we consider a wireless communication system
employing orthogonal frequency-division multiple access
(OFDMA) as its multiple access protocol in the uplink. Note
that when another multiple access protocol (e.g., TDMA)
is adopted, our proposed algorithms can still be adapted to
that scheme. Within the OFDMA scheme, the operational
frequency bandwidth B is partitioned into L equal sub-
bands, each of width W = B

L . To ensure the orthogonality
of offloading transmissions among users affiliated with the
same server, each user is allocated to a distinct sub-band.
Consequently, each server can serve at most L users at the
same time. Let L = {1, ..., L} be the set of sub-bands at
each server. We define the task offloading variables, which
integrate both the uplink sub-band scheduling and the selection
of machine learning algorithms, as an,m,k,l ∈ {0, 1}, where
an,m,k,l = 1 indicates that the task from user un is offloaded
to server sm via the sub-band l and processed by the ML
algorithm k, and an,m,k,l = 0 otherwise. As each task can
be offloaded and executed to at most one server, a feasible
offloading policy must satisfy the following constraint∑

m,k,l

an,m,k,l ≤ 1, ∀un ∈ U . (1)

Additionally, we denote Uoff as the set of users that of-
fload their tasks, and let m(n), k(n) and l(n) be such that
an,m(n),k(n),l(n) = 1.

We further let Pn to denote the transmit power of user un,
∀un ∈ U , and assume

Pn = 0, ∀un ̸∈ Uoff, (2)
0 ≤ Pn ≤ Pmax, ∀un ∈ Uoff, (3)

where Pn is the transmission power of user un subject to a
maximum budget Pmax. Since users employ distinct sub-bands
when transmitting to the same server, the uplink interference
associated with the same server is effectively alleviated. Nev-
ertheless, these users remain susceptible to interference among
different servers. In this case, the Signal-to-Interference-plus-
Noise Ratio (SINR) from user un ∈ Uoff to server sm(n) on
sub-band l(n) is given by

2

SINRn,m(n),l(n)

=

Pn

(d(n,m(n)))α

ν +
∑

n′,n′ ̸=n
m′,m′ ̸=m(n)

k

an′,m′,k,l(n)
Pn′

(d(n′,m(n))α

, ∀un ∈ Uoff,

where ν is the background noise, d(n,m(n)) is the distance
between user un and server sm(n), and α ∈ [2, 4] is the path
loss exponent [4], [8]. Hence, the transmission time of user
un when sending its task to server sm(n) can be calculated as

τ up
n,m(n) =

Dn

W log2(1 + SINRn,m(n),l(n))
, ∀un ∈ Uoff. (4)

C. Server Computing Resources
Each server sm ∈ S has the following attributes:

• Position: The server sm’s position is represented by a
coordinate (xm, ym) in two-dimensional Euclidean space.

• CPU capacity: The server sm’s CPU capacity is a positive
integer Cm, indicating the number of CPU cores.

• RAM capacity: The server sm’s RAM capacity is denoted
by a positive integer Rm.

3. PROBLEM FORMULATION

A. Joint Task Offloading and Resource Allocation problem
We let A = {an,m,k,l|∀un ∈ U , sm ∈ S, k, l} denote the task
offloading policy, and P = {Pn| ∀un ∈ Uoff} denotes the
transmit power allocation plan. Based on the above system
model, we formulate the joint task offloading and resource
allocation (JOA) problem as the maximization problem:

max
A,P

R =
∑

n,m,k,l

an,m,k,l × rn,k, (5)

s.t.
∑
n,k,l

an,m,k,l × CPUn,k ≤ Cm, ∀sm ∈ S, (6)∑
n,k,l

an,m,k,l × RAMn,k ≤ Rm, ∀sm ∈ S, (7)∑
n,k,l

an,m,k,l ≤ 1, ∀un ∈ U , (8)

an,m,k,l ∈ {0, 1} ,∀un ∈ U , sm ∈ S, k, l, (9)
τ up
n,m(n) + τ exe

n,k(n) ≤ δn, ∀un ∈ Uoff, (10)

SINRn,m(n),l(n) ≥ β, ∀un ∈ Uoff, (11)
0 ≤ Pn ≤ Pmax, ∀un ∈ Uoff. (12)

Constraints (6) and (7) ensure that the CPU and RAM usage
on each edge server does not exceed what is available.
Constraint (8) ensures that each task can be offloaded and
executed to at most one server. Constraint (10) guarantees that
each user’s total completion time does not exceed the task
deadline. Constraint (11) ensures that the server successfully
decodes the information transmitted from the user, i.e., the
SINR must be larger than β. Constraint (12) ensures that the
transmission power of each user does not exceed its budget.
The above JOA optimization problem is a Mixed non-linear
integer programming problem, which is generally challenging
to solve [1]. We aim to design low-complexity solutions that
achieve good performance while being practical to implement.

B. Properties of JOA

We observe the following two critical properties by exploit-
ing the structure of the objective function and constraints of
the JOA problem in (5).

Property 1. Given an infeasible offloading policy, the new
offloading policy will still be infeasible if an extra task is
added.

Proof. This follows directly from the fact that, given an
infeasible offloading policy, any violated constraints among
Constraints (6), (7), (10), and (11) will still be violated if an
extra task is added.

Property 2. For a given offloading policy A =
{an,m,k,l|∀un ∈ U , sm ∈ S, k, l} satisfying Constraint (6),
(7), (8), and (9), its feasibility can be determined efficiently
by solving the following system of linear inequalities

Pn

(d(n,m(n)))
α ≥ max{β, 2

σn
B − 1}×{

ν +
∑

n′,n′ ̸=n
m′,m′ ̸=m(n)

k

an′,m′,k,l(n)
Pn′

(d(n′,m(n))
α

}
, ∀un ∈ Uoff,

0 ≤ Pn ≤ Pmax, ∀un ∈ Uoff, (13)

where σn = Dn

δn−τexe
n,k(n)

, ∀un ∈ Uoff. This is a Linear
Programming (LP) feasibility problem.

Proof. Constraint (10) can be rewritten as

SINRn,m(n),l(n) ≥ 2
σn
B − 1, ∀un ∈ Uoff. (14)

Thus, constraints (10) and (11) can be replaced by

SINRn,m(n),l(n) ≥ max{β, 2
σn
B − 1}, ∀un ∈ Uoff. (15)

This can be further rewritten as
Pn

(d(n,m(n)))
α ≥ max{β, 2

σn
B − 1}×{

ν +
∑

n′,n′ ̸=n
m′,m′ ̸=m(n)

k

an′,m′,k,l(n)
Pn′

(d(n′,m(n))
α

}
, ∀un ∈ Uoff,

which finishes the proof.

4. AN EXACT ALGORITHM

In this section, we design a branch and bound algorithm to
obtain an optimal solution to the JOA problem using a search
tree. Although the branch and bound algorithm paradigm has
been known for a long time [9], we note that our proposed
bounding technique is novel and can effectively obtain an
optimal solution compared to the exhaustive search.

Specifically, our proposed algorithm traverses a search tree
with the height of N , where each non-root level corresponds
to user un’s offloading strategy. Each node is presented by
a 4-tuple (n,m, k, l). When m = 0, it means that the n-th
user’s task will not be offloaded; When m ̸= 0, it means that

3

the n-th user’s task will be offloaded to the m-th server using
the l-th sub-band, and the task will be processed by the k-th
ML algorithm. Each non-leaf node (n,m, k, l) has MLK+1
children, i.e., the n+1-th user has MLK offloading choices,
in addition to not offloading. Our proposed exact algorithm
traverses the search tree using our novel bounding technique,
calculates the current total reward Rtmp, and updates the
current best reward Rbest if needed. This process follows a
pre-order traversal. We use the following example to illustrate
the traversal process.

Fig. 1: Traversing process in the proposed algorithm

Example 1. Let N = 3, M = 2, K = 1, and L = 2.
As illustrated in Fig. 1, the traversing process starts from
the root of the search tree and the node (1, 0, ∗, ∗) using
the proposed branch-cutting criteria. If we do not cut its
branch, we will check its child (2, 0, ∗, ∗). If we do not cut
(2, 0, ∗, ∗)’s branch, we will check its children in the order of
(3, 0, ∗, ∗), (3, 1, 1, 1), (3, 1, 1, 2), (3, 2, 1, 1), and (3, 2, 1, 2).
Then, the process backtracks to (2, 0, ∗, ∗) and check its sibling
(2, 1, 1, 1). The traversal will repeat the above process until
all the nodes are checked or cut out.

The general idea of the proposed bounding techniques is
that we cut the branches not containing a better or feasible
solution. Specifically, we have the following branch-cutting
criteria:

• Infeasible: If a node causes the server resource usage to
exceed capacity or fails the communication time/SINR
requirements, i.e, any of the constraints (6), (7), (10) and
(11) is violated, its branch will be cut. This branch-cutting
criteria directly follows Property 1, which indicates that
this node’s children are infeasible and do not need to be
considered.

• Inferior: For any node associated with the n-th user, we
define

C(n) =

N∑
n′=n

∑
m,k,l

an′,m,k,l × rn′,k, (16)

as the maximum possible reward from the remaining un-
explored users after the n-th user’s parent. If Rtmp+C(n)
is less than the current best reward Rbest, we will cut the
branch of this node. This is because it is impossible to
improve the Rbest by exploring the children of this node.

Let X = (n,m, k, l) be an arbitrary node in the search tree.
We define CHi(X) as one of its children, where i is its
index. We summarize the traversing process in Algorithm 1.
Our exact algorithm calls Preorder(root, Anull, 0) where
Anull = {an,m,k,l = 0|∀un ∈ U , sm ∈ S, k, l} is the
offloading strategy in which none of the tasks is offloaded.

Besides the proposed branch-cutting criteria, we implement
the following optimizations to reduce the search space further:

Algorithm 1: Preorder(X,Abefore
best , R

before
best)

Input: X: node to check; Abefore
best and Rbefore

best : the best
solution and its corresponding object function value
before checking node X

Output: Aafter
best and Rafter

best: the best solution and its
corresponding object function value after checking
node X

1 if X is infeasible or inferior then
2 return (Abefore

best , Rbefore
best);

3 Aafter
best ← Abefore

best ; Rafter
best ← Rbefore

best ;
4 Calculate current total reward Rtmp according to (5);
5 if Rtmp > Rafter

best then
6 Rafter

best ← Rtmp; Update Aafter
best corresponding to X;

7 for i = 1, 2, . . . ,MLK + 1 do
8 (Atmp, Rtmp)← Preorder(CHi(X),Aafter

best, R
after
best);

9 if Rtmp > Rafter
best then

10 Rafter
best ← Rtmp;

11 Update Aafter
best corresponding to CHi(X);

12 Output (Aafter
best, R

after
best)

• We define the maximum distance for any user to transmit
(without any interference) as

dmax =

(
Pmax

νβ

)−α

. (17)

If the distance between the n-th user and the m-th server
is larger than dmax, the n-th user will not offload its task
to the m-th server, as it is impossible for the user un

to achieve an SINR higher than β when communicating
with m.

• If a node (n,m, k, l) is infeasible due to violating SINR
constraint (Constraint (11)), we do no subsequent cal-
culations on its siblings (n,m, k′, l),∀k′ ̸= k. This is
because it is impossible to improve SINR by changing
the ML algorithm tiers.

5. A HEURISTIC ALGORITHM

Besides the exact algorithm mentioned above, we propose
a meta-heuristic approach based on the simulated annealing
(SA) method to tackle the JOA problem. SA is a rule-based
heuristic search process used to improve the current solution
to a new one, representing the better objective value for a
given optimization problem [10], [5]. In particular, for the
proposed JOA problem, the initial feasible task offloading
strategy Aold is randomly selected. After the perturbation
process, which generates a new trial point Anew by making
a small perturbation from the current solution Aold, the new
strategy that results in improvements in solution quality, i.e.,
the solution that increases the value of the objective, is auto-
matically accepted; the new strategy decreasing the objective
is also accepted with a certain probability exp(− |Rnew−Rold|

T).
Introducing this stochastic criterion allows the worse solution
to be accepted to avoid being trapped in a local maximum.
Nevertheless, each iteration must reduce this probability to
avoid accepting an inferior solution.

Let R (A) =
∑

n,m,k,l an,m,k,l × rn,k. The heuristic SA
algorithm with LP feasibility-based criterion is summarized in

4

Algorithm 2: SA(Aold, T, µ)

Input: Aold: initial offloading policy; T : temperature; µ:
coefficient for reducing accepting probability

Output: Abest and Pbest: best-known offloading and power
allocation plan; Rbest: earned reward value

1 Set initial temperature T to a positive number.
2 Set Aold to an initial feasible solution and compute

Rold ← R(Aold).
3 Set Abest ← Aold and Rbest ← Rold.
4 for i = 1, ...,number_of_iterations do
5 Anew ← Perturbation(Aold, H,M,K,L);
6 if Anew satisfies Constraints (6), (7), (8) and
7 problem (13) has a feasible solution Pnew then
8 Rnew ← R(Anew);
9 Generate a random number c ∈ (0, 1);

10 if Rnew > Rold or c < exp(− |Rnew−Rold|
T

) then
11 Aold ← Anew;
12 Pold ← Pnew;
13 Rold ← Rnew;
14 if Rnew > Rbest then
15 Abest ← Anew; Pbest ← Pnew;
16 Rbest ← Rnew;

17 T ← µT ;

18 Output Abest, Pbest, and Rbest

Algorithm 2. Compared to the traditional SA, the proposed
SA algorithm implements an extra accepting criterion of
offloading strategy (lines 6-8). This accepting criterion is based
on Property 2, in which we check the new candidate Anew’s
feasibility by solving the LP feasibility problem (13),

Due to the binary nature of the task offloading indicator, the
perturbation process Perturbation() needs to be appropri-
ately designed in Algorithm 2. We summarize the perturbation
process in Algorithm 3, where the function Random(a, b)
randomly returns an integer number from [a, b]. Specifically,
given an offloading strategy A, we randomly select H users
out of the set U . Let Uselected be the set of the selected H
users. For each of these selected H users, we then change the
server to which its task is being offloaded and the tile of its ML
algorithm. This process yields a new perturbed version of the
original offloading strategy. Note that the perturbed offloading
strategy must not be the same as the original one.

6. PERFORMANCE EVALUATION

A. Evaluation Setup

We generate four types of test cases with different sizes:
small with 5 users, 2 servers, 2 ML algorithms, and 2 sub-
bands; medium with 10 users, 3 servers, 2 ML algorithms,
and 2 sub-bands; med-large with 15 users, 5 servers, 2 ML
algorithms, and 3 sub-bands; and large with 20 users, 5
servers, 2 ML algorithms, and 3 sub-bands. We set the users’
maximum transmit power to Pmax = 5 W; the bandwidth
of each channel is B = 20 MHz; the background noise is
assumed to be ν = −65 dBm; the path loss exponent is α = 3;
and signal quality threshold β is set to 15 dB for all cases.
For SA, the initial temperature T is 1000. We normalize the
total rewards in all the presented results. The experiment is
conducted on a workstation running Ubuntu 22.04 with Intel

Algorithm 3: Perturbation(A, H,M,K,L)

Input: A: current offloading strategy; H: constant; M :
number of servers; K: number of sub-bands; L:
number of ML algorithm tiers

Output: perturbed version of A: A′

1 Randomly select H users out of U .
2 for un ∈ Uselected do
3 if un ∈ Uoff then
4 an,m(n),k(n),l(n) ← 0;

5 else
6 m(n)← 0; k(n)← 0; l(n)← 0;

7 while True do
8 m′(n)← Random(0,M);
9 k′(n)← Random(0,K);

10 l′(n)← Random(0, L);
11 if m′(n) = 0 then
12 k′(n)← 0;

13 if m′(n) ̸= m(n) or k′(n) ̸= k(n)
14 or l′(n) ̸= l(n) then
15 break

16 if m′(n) ̸= 0 then
17 an,m′(n),k′(n),l′(n) ← 1;

18 Output A′

i9-12900 CPU (24 cores @ 5.0 GHz) and 64 GB memory. All
algorithms are implemented and executed in Python 3.11. We
use Gurobi 11 to solve the LP feasibility problem (13).

We experiment with two kinds of initial policies for the
simulated annealing: a “blank” policy where Aold is all 0’s,
and a greedy policy. The greedy policy is obtained as follows:
we first sort the users’ tasks by their rewards rn,k, then attempt
to offload tasks in the descending order of their reward values.
For each task, the greedy strategy tries to assign it to a server
as near as possible, where Constraints (6), (7), (10), and (11)
are satisfied. If no such assignment is feasible, the task will not
be offloaded. If a user already has a task with a higher reward
offloaded, their remaining tasks (with lower rewards) are not
considered. In the subsequent plots, the greedy initial solution
is referred to as ”SA w/ G”. We choose iteration numbers
that scale with the test case size for both SA initial starting
points. Specifically, the iteration number is 100 × MLK.
This number is chosen to balance between running time and
performance.

B. Evaluation Results

In Figures 2a and 2b, the results are averaged over 30 test
cases per test case size. Figure 2a reveals that the simulated
annealing approach can be effective for different test case
sizes, with its relative reward tapering off as the test cases
increase. The greedy initial policy offers slightly better rewards
than the blank policy. Figure 2b shows that our SA algorithm
exhibits increased performance as the number of iterations
increases. Smaller test cases plateau at small iteration numbers,
while larger cases have increased gains (albeit slower) at high
iteration numbers. For small to med-large cases, 10, 000
iterations yields at least 91% of the rewards the exact algorithm
obtains. At 100, 000 iterations, the large case yields about

5

Exact = 1

0.0

0.3

0.6

0.9

small medium med−large large

Test case size

R
e
l.
 p

e
rf

o
rm

a
n
c
e
 (

E
x
a
c
t
=

 1
)

SA w/ G

SA

(a) Total rewards across test cases of different sizes (H = 2)

0.00

0.25

0.50

0.75

1.00

100 1000 10000 100000

SA Iterations

R
e
la

ti
ve

 r
e
w

a
rd

 (
E

x
a
c
t=

1
)

TC Size

small

medium

med−large

large

(b) Total rewards obtained by heuristic algorithm across different iterations (H =
2)

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

H

R
e
la

ti
ve

 r
e
w

a
rd

 (
E

x
a
c
t=

1
)

TC Size

small

medium

med−large

large

(c) Total rewards obtained by heuristic algorithm across different perturbation
sizes (100, 000 iterations)

Fig. 2: Performance evaluation

83% of the rewards the exact algorithm obtains. We note that
larger cases have exponentially bigger search trees; thus, given
a fixed number of iterations, the SA algorithm can only use a
smaller portion of the search space on larger cases. As such,
given a fixed H and iteration number, the effectiveness of
SA decreases as the test case increases in size. Due to the
randomness in the test case generation and SA execution,
certain data points may appear to be outliers (e.g., medium
and med-large at 10, 000 iterations), but overall this trend
holds.

 10

 100

 1,000

10,000

small medium med−large large

Test case size

T
im

e
 c

o
n

s
u

m
e

d
 (

s
)

(l
o

g
 s

c
a

le
)

Exact SA w/ G SA

Fig. 3: Running time of proposed algorithms (k = 2)

Figure 2c presents the performance of the proposed heuristic
algorithm across different perturbation sizes H using 100, 000
iterations. For our test cases, H = 2 or H = 3 yields the
best results for all sizes. However, as H increases past 3, the
reward drops sharply. This is due to the increasing number
of users making changes simultaneously per iteration, making
it more likely to result in an assignment that violates one or
more constraints.

Size small medium med-large large
γ 3.63× 10−2 2.06× 10−7 4.63× 10−16 1.78× 10−22

TABLE I: γ in different test case sizes

In Fig. 3, the running time of both SA is approximately
linear to the input size, while the exact algorithm exhibits
exponential growth in time. To investigate the effectiveness of
our bounding techniques for the Exact algorithm, we count
the total number of nodes in the search tree visited by the
algorithm and divide that by the number of nodes visited using
an exhaustive search on the tree. This ratio, γ, is averaged
over 30 cases for each test case size. As seen in Table I, γ
decreases as the test case size increases. This is because when
the test case gets bigger, it cuts off more nodes each time the
algorithm bounds from a node. Despite the effectiveness of
the bounding techniques, the Exact algorithm runs in a low-
order exponential time overall due to the size explosion of the
search tree.

7. CONCLUSION

In this work, we study the problem of jointly optimizing
task offloading and resource allocation (JOA) in tactical edge
networks, and formulate it as maximizing the total task com-
pletion rewards subject to various resource constraints. We
develop two algorithms to address the JOA problem. The first
is an exact algorithm employing a search tree, with branch-
cutting criteria derived from the inherent properties of the JOA
problem. The second is a meta-heuristic algorithm based on
the simulated annealing approach. Through numerical eval-
uations, we demonstrate that the proposed exact algorithm
is capable of obtaining the optimal task offloading strategy
and resource allocation plan, while the heuristic algorithm
efficiently delivers competitive performance.

REFERENCES

[1] S. Burer and A. N. Letchford, “Non-convex mixed-integer nonlinear pro-
gramming: A survey,” Surveys in Operations Research and Management
Science, vol. 17, no. 2, pp. 97–106, 2012.

[2] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2014.

[3] Y. Chen, K. Zhao, B. Li, and M. Zhao, “Exploring the use of synthetic
gradients for distributed deep learning across cloud and edge resources,”
in 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge
19), 2019.

[4] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, 2000.

[5] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[6] S. Lin, Z. Zhou, Z. Zhang, X. Chen, and J. Zhang, Edge intelligence in
the making: Optimization, deep learning, and applications. Springer,
2021.

[7] J. Perazzone, M. Dwyer, K. Chan, C. Anderson, and S. Brown, “En-
abling machine learning on resource-constrained tactical networks,” in
2022 IEEE Military Communications Conference (MILCOM). IEEE,
2022, pp. 932–937.

[8] J. Tang, G. Xue, and W. Zhang, “Interference-aware topology control and
qos routing in multi-channel wireless mesh networks,” in Proceedings
of the 6th ACM International Symposium on Mobile ad hoc networking
and computing, 2005, pp. 68–77.

[9] Y. Wan, X. Lin, A. Sabur, A. Chang, K. Xu, and G. Xue, “IoT system
vulnerability analysis and network hardening with shortest attack trace
in a weighted attack graph,” in Proceedings of the 8th ACM/IEEE
Conference on Internet of Things Design and Implementation, 2023,
pp. 315–326.

[10] G.-L. Xue, “Parallel two-level simulated annealing,” in Proceedings of
the 7th international conference on Supercomputing, 1993, pp. 357–366.

[11] Z. Zhang, S. Lin, M. Dedeoglu, K. Ding, and J. Zhang, “Data-driven
distributionally robust optimization for edge intelligence,” in IEEE IN-
FOCOM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 2619–2628.

[12] Z. Zhang, S. Yue, and J. Zhang, “Towards resource-efficient edge AI:
From federated learning to semi-supervised model personalization,”
IEEE Transactions on Mobile Computing, 2023.

6

