
Most Vulnerable Attack Trace in a Probabilistic
Attack Graph

Xuanli Lin, Zhaofeng Zhang, Yinxin Wan, Ethan Teo, Guoliang Xue, Yanchao Zhang

Abstract—In this paper, we investigate the properties and
computation of attack traces on probabilistic attack graphs, a
model that integrates probability into traditional attack graphs
to reflect the varying exploitability of network vulnerabilities.
We introduce the Most Vulnerable Attack Trace (MVAT) prob-
lem, which aims to identify the attack trace with the highest
cumulative success probability for an attacker. To address this
problem, we propose both an exact algorithm and a heuristic
algorithm, each designed to navigate the complexities introduced
by cycles in the attack graph. Our exact algorithm explores all
possible sequences of node selections to ensure the optimal attack
trace, while our heuristic algorithm efficiently approximates the
MVAT in polynomial time. We evaluate the performance of
our algorithms using an extensive dataset, demonstrating the
usefulness of the proposed algorithms.

1. INTRODUCTION AND BACKGROUND

Cybersecurity has garnered significant attention in the research
community, and recent high-profile cybersecurity incidents
[2] have highlighted the importance of understanding and
mitigating sophisticated cyber threats. The proliferation of
interconnected systems and the increasing complexity of net-
work architectures have only expanded the landscape for
potential cyber-attacks. For example, the rise of Internet of
Things (IoT) has brought smart devices to the masses, but
vulnerabilities in these devices have also introduced a wide
range of attacks [1]. Therefore, a systematic view of the
networks and how attackers may penetrate them is vital to
understanding network security.

To this end, logical attack graph [7] was proposed and
has been used in a wide variety of network vulnerability
studies [9] [10]. The attack graph visualizes the vulnerabilities
of connected devices, where each node represents a fact or
rule, and each edge represents a “depends on” relationship.

One emerging area in this domain is the study of the attack
trace in attack graphs, proposed in IOTA [3]. An attack trace
is a subgraph of an attack graph, and it models how an
attacker can achieve their attack goal from existing knowledge
and vulnerabilities, and provides an important insight into
attacker’s possible course of action. The attack trace represents

Xuanli Lin, Zhaofeng Zhang, Ethan Teo, Guoliang Xue, and Yanchao
Zhang are affiliated with Arizona State University and CoE-FutureG. Email:
{xlin54, zzhan199, ethanteo, xue, yczhang}@asu.edu.
Yinxin Wan is affiliated with UMass Boston. Email: Yinxin.Wan@umb.edu.
Research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-23-2-0225.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation
herein.

a structured way to represent the sequence of actions an
attacker can take, illustrating the interplay between different
vulnerabilities and the progression of an attack. Specifically,
IOTA performs an in-depth analysis of common IoT devices
to extract information such as their vulnerabilities and inter-
actions with the physical world. This information is then used
to construct an attack graph, and it finds the shortest attack
trace (SAT) in the graph, defined as an attack trace with the
shortest depth. Here, the depth is the hop count of the longest
path from any source node to the sink node in the attack trace.

Wan et al. [11] augments the works in IOTA and proposed
a variant of the attack graph model, where nodes and edges
are assigned non-negative weights. This weight can represent
concepts such as the penetrability of a node or an edge.
Accordingly, an SAT is defined as an attack trace with the
minimum height in the graph, where the height is calculated
as the sum of the weights of nodes and edges along the longest
path within the attack trace.

We aim to further refine the attack trace model by intro-
ducing the notion of probability. The concept of probability
in attack graphs and its application in attack graphs is well
discussed in the literature. For example Wang et al. [12] assign
probabilities to each node in an attack graph and calculate the
cumulative probabilities for every node in the attack graph.
Munoz-Gonzalez et al. [5] proposes a Bayesian approximation
scheme for acyclic attack graphs where each node is a random
variable and each edge represents a dependency relationship
between two variables. However, to the best of our knowledge,
the attack trace has not been used in a cyclic probabilistic
attack graph. We study the attack trace in a variant of logical
attack graphs with probabilities at nodes and/or edges, and
we define the most vulnerable attack trace (MVAT) in attack
graphs. We examine how cycles in an attack graph can
complicate the derivation of MVAT. Then, we propose an exact
algorithm and a heuristic algorithm to solve MVAT in any
attack graph, respectively. Our experiment results show that
both algorithms can produce better results compared to the
baseline, a modified SAT algorithm. Our main contributions
are the following:

• We study the properties of the attack trace in probabilistic
attack graphs and formulate the MVAT problem.

• We propose an exact algorithm and a heuristic algorithm
for solving the MVAT problem, which correctly deter-
mines the MVAT in any attack graph.

• We implement both algorithms and perform evaluation
on an extensive dataset. The results demonstrate the
effectiveness of our algorithms.

The remainder of this paper is organized as follows. Section 2



defines basic concepts. Section 3 discusses some properties of
the attack trace in probabilistic attack graphs. Section 4 and 5
presents our exact and heuristic algorithm for computing an
MVAT, respectively. Section 6 presents the evaluation results.
Section 7 concludes this paper.

2. BASIC CONCEPTS

We extend the concept of attack graphs [7] and introduce
probabilistic attack graphs.

Definition 1 (Probabilistic Attack Graph). A probabilistic
attack graph is a directed graph G = (Vp, Vd, Vr, E, p, g),
where Vp, Vd and Vr denote the set of primitive fact vertices
(source vertices), derived fact vertices (OR vertices), rule
vertices (AND vertices), respectively (we use V = Vp∪Vd∪Vr

to denote the set of all vertices); E ⊆ {(Vp∪Vd)×Vr}∪{Vr×
Vd} is the set of directed edges; p(v) : V → R≥0 is the success
probability for a vertex v ∈ V ; p(e) : E → R≥0: the success
probability for an edge e ∈ E; g ∈ Vd is the attacker’s goal
or the sink vertex.

Here, the success probability refers to the probability that
an attacker successfully attacks and gains access to a network
element if the preconditions on that element is satisfied.

We study the type of attack graph where the attacker has a
single goal g; however the work can be trivially extended to
the case where multiple goals exist. □

The concept of probabilistic attack graph is based on the
concept of attack graph studied in the literature [3, 7, 9, 10],
where the success probability p is applied to the edges and/or
vertices of a regular attack graph. Unless otherwise specified,
an “attack graph” refers to a probabilistic attack graph for the
rest of the paper.

Since vulnerabilities differ greatly in their exploitability,
the success probability is a natural expression of the overall
difficulty for an attacker to exploit the network element.

To analyze the vulnerabilities in enterprise networks, the
concept of attack path was used in [7], and it is an acyclic
sequence of vertices < vp, v

1
d, v

2
d . . . , g > where vp is a leaf

vertex and v1d, v2d, . . . are derived vertices. It was demonstrated
that the concept of attack path does not fully capture the depen-
dencies between vertices in an attack graph [11]. Therefore,
our work relies on the concept of attack trace proposed in [3].
We define the attack trace in a probabilistic attack graph as
follows.

Definition 2 (Attack Trace in a Probabilistic Attack
Graph). Let G be a probabilistic attack graph. Let t ∈ V be
any vertex in G. An attack trace to vertex t in G, denoted by
T t, is a subgraph of G that satisfies the following properties:

1) Let v be any vertex in T t. If v ∈ Vd, then the in-degree
of v in T t is at least 1. In other words, for any OR
vertex v in T t, T t contains at least one of the edges in
{(u, v)|(u, v) ∈ E}.

2) Let v be any vertex in T t. If v ∈ Vr, then the in-degree
of v in T t equals to the in-degree of v in G. In other
words, for any AND vertex v in T t, T t contains all edges
in the set {(u, v)|(u, v) ∈ E}.

3) Let v be any vertex in T t. If the in-degree of v in T t is
0, then v ∈ V G

p . In other words, every source vertex in
T t is a primitive fact vertex.

4) Vertex t is the only vertex in T t with out-degree 0 in T t.
5) T t is acyclic.
An attack trace to vertex g is called an attack trace of G.

We may use T to denote T g since the goal vertex g is unique
in G. □

To obtain the probability that the goal node is successfully
attacked, we introduce the cumulative success probability for
each node in an attack graph.

Definition 3 (Cumulative Success Probability). Let G be a
probabilistic attack graph. Let t ∈ V be any vertex in G. Let
T t be an attack trace to t in G.

Let v be any node in T t, the cumulative success probability
at v is P (v), and it is recursively defined as follows.

• If v ∈ Vp, P (v) = p(v).
• If v ∈ Vr, P (v) = p(v) ·

∏
(u,v)∈E(T t) P (u) · p(u, v).

• If v ∈ Vd,
P (v) = p(v) · (1−

∏
(u,v)∈E(T t) (1− P (u) · p(u, v))).

We define the cumulative success probability of T t, de-
noted P (T t), as the cumulative success probability at t, i.e.,
P (T t) = P (t). □

To identify the attack trace that yields the highest success
probability to the goal node (and therefore, most vulnerable),
we define the MVAT as follows.

Definition 4 (Most Vulnerable Attack Trace). Let G be a
probabilistic attack graph G, and t ∈ V be any vertex in G.
Let T t

mv be an attack trace in G. T t
mv is said to be a MVAT

to vertex t in G, if P (T t
mv) ≥ P (T t) for any attack trace T t

to vertex t. A MVAT to vertex g ∈ V (the attacker’s goal) is
called a MVAT of G. □

A given attack graph may have multiple nonidentical MVAT.
However, for any two MVATs T1 and T2 of attack graph
G, their cumulative success probability must be equal, i.e.,
P (T1) = P (T2). For ease of presentation, we use TG

mv to
denote a MVAT; we drop the superscript and say Tmv when
the referred graph G is clear from the context.

Following a MVAT is the optimal strategy for the attacker. In
other words, for an attacker, following the MVAT Tmv would
represent the best likelihood of them gaining access to the goal
node.

3. PROPERTIES OF AN ATTACK TRACE

Given a (probabilistic) attack graph G, we observe the follow-
ing properties about its attack trace T t:

Proposition 3.1. For any AND node vr ∈ Vr, if it is included
in T t, then all its predecessors and the edges pointing from
these predecessors to v should also appear in T t.

Proof. This follows directly from Definition 2.

Proposition 3.2. If any OR node vd ∈ Vd is included in T t,
having more of its predecessors (and their associated edges)

2



always yields equal or better cumulative success probability
P (vd) at the node.

Proof. This result stems from our Definition 3, where success
probability at OR nodes are multiplicatively computed.

Consider the following example, where an OR node vd with
two predecessors u1 and u2. When no predecessor is selected
in T t, the probability of reaching vd is 0. (In fact, vd would
not be included in T t as it would be unreachable). When only
u1 is selected, P (vd)1 can be given as

P (vd)1 = P (u1) · p(u1, vd) · p(vd) (1)
When both u1 and u2 are selected, the probability becomes

P (vd)2 = (1−(1− P (u1) · p(u1, vd))·
(1− P (u2) · p(u2, vd))) · p(vd)

(2)

Subtracting equation (1) from equation (2), their difference is
P (vd)2 − P (vd)1 = P (u2) · p(u2, vd) · p(vd)·

(1− P (u1) · p(u1, vd))
(3)

Since the node and edge probabilities are always non-
negative, quantity (3) is also non-negative.

An interesting result of the above propositions is given
below

Corollary 3.1. For an acyclic probabilistic attack graph G,
its MVAT Tmv is the attack graph itself, i.e., Tmv = G.

Proof. Assume the opposite is true: an MVAT of G can
be obtained by removing nodes from the original graph G.
Suppose v is one of the removed nodes. If v ∈ {Vp ∪ Vd},
it would also remove its successor AND nodes to satisfy
the definition of an attack trace, which is equivalent to the
following situation. If v ∈ Vr, its successor OR nodes will
have one less predecessor. As shown in Proposition 3.2,
this will result in equal or worse cumulative probabilities of
successor nodes of v. Therefore, MVAT cannot be obtained
by removing nodes from the original attack graph.

In this paper, we are mainly interested in cyclic attack
graphs. If we select the entire graph as an attack trace, there
will be cycle(s) in the attack trace, which is not permitted.
Therefore, we must consider the properties of a cyclic attack
graph and how we can produce a cycle-free attack trace while
maximizing the success probability at the goal node.

Formally, we study the following problem.

Definition 5 (MVAT Problem). Given a probabilistic attack
graph G, what is a MVAT, Tmv in G? And what is the
corresponding cumulative success probability at the goal node,
P (Tmv)?

As discussed in Corollary 3.1, the answer to the MVAT
Problem in an acyclic attack graph is trivial. For cyclic graphs,
the exact answer is not easily obtained.

Consider the following high-level algorithm for obtaining an
attack trace T g in attack graph G (some lesser details omitted).
First, create a priority queue PQ. Then, all the primitive nodes
Vp to PQ, and update P (v) for all v ∈ Vp. While the PQ
not empty, pop u from PQ, then visit u’s neighbors v: update

P (v) and if v is ready, insert v to PQ and insert (u, v) to T g .
Finally, return T g and P (T g) when g is extracted from PQ.

It is easy to determine whether a node is considered ready
for an AND node - it is ready only when it is visited by all
of its predecessors. However, for an OR node, the answer is
more nuanced if we want to obtain an MVAT from G.

As stated in Proposition 3.2, for an OR node v, it is ad-
vantageous to include as many of its predecessors as possible
in the attack graph to maximize P (v). However, if there are
cycle(s) that v is part of, we will have to decide when we
consider v to be ready. A natural approach is to wait for every
other node to be visited and processed and only add v to PQ.
We can then get the maximum possible P (v).

However, if there is a deadlock, i.e., multiple OR nodes
are not ready after we exhaust the PQ, it may indicate that
some OR nodes are the predecessor of some other OR nodes.
In this circumstance, it is necessary to resolve the deadlock
by picking an OR node (that is not ready when the PQ is
exhausted) so the algorithm can proceed. Eventually, there can
be another deadlock that needs to be resolved, and so on. The
process continues until we find an attack trace when the goal
g is extracted from the PQ, or we fail to find an attack trace
when all nodes V ∈ G are visited, and g is not extracted.

Therefore, the crux of the MVAT Problem is the determina-
tion of an optimal sequence of OR nodes to be inserted into
the PQ when deadlocks happen. To this end, we propose an
optimal exact algorithm in Section 4 and a heuristic in Sec-
tion 5. The difference between the two algorithms lies entirely
in their deadlock resolution strategies. While the heuristic
algorithm resolves the deadlock by picking the non-ready OR
node with the highest cumulative success probability, the exact
algorithm attempts all possible sequences of OR node selection
to find the one that results in the highest cumulative success
probability at the goal node.

4. EXACT ALGORITHM FOR MVAT

We present an optimal algorithm ExactMVAT for computing
an MVAT in Algorithm 1. The algorithm’s flow is as follows:

We first initialize the attack graph G in Line 1 to Line 10.
Then, we visit all primitive fact nodes Vp and update their
cumulative success probability in Line 11, using the Advance
auxiliary procedure.

Essentially, Advance takes in an attack graph G and a
queue Q and attempts to visit every successor node of the
nodes in Q. A node is only visited if its predecessor nodes
have been visited. Ultimately, it may end up with zero or more
nodes that cannot be visited due to their predecessors not being
fully visited and no other nodes being available. The algorithm
then returns a list L of OR nodes in deadlock.

L may be empty, indicating that no deadlock has been
encountered. If there are multiple nodes in L, we need to
try all of them to find out which one gives the most optimal
cumulative success probability at the goal node. The process
effectively results in a decision tree if multiple such decisions
are needed.

3



In Algorithm 1, we use a stack S and an indicator i to guide
the algorithm’s execution. When a deadlock is encountered, a
stack entry (L,G, i) is push onto the stack S (Line 16). The
indicator i is initially set to 1, and the algorithm proceeds to
call Advance on G, with Q being just a single node L[i]
(Line 17). This has the effect of choosing L[i] to break the
deadlock.

After advancing, if there are no nodes left in the resulting
L, we know that either an attack trace is found or no attack
trace exists. In Line 19 and Line 20, we update the global best
and its corresponding attack trace. Note that if no attack trace
is found, P (g) is zero, so no update will occur.

In Line 21 to Line 23, we check if There are entries on
the stack. If so, we will backtrack and pop the top entry.
The algorithm then increments the counter i and proceeds to
Advance on L[i]. Otherwise, there are no more tree nodes
left to explore on the decision tree, and we can go to Line 25.

If L is not empty, we need to explore the nodes in L, and
we create a new layer of stack entry.

In conclusion, ExactMVAT traverses the decision tree for
breaking deadlocks in a DFS manner and finding a sequence
that maximizes the cumulative success probability at g.

Algorithm 1: ExactMVAT(G)

Input: G = (Vp, Vd, Vr, E, p, g): an attack graph
Output: Tmv: an attack trace to g in G with the highest

probability of success; Pmax: success probability of
g in Tmv

1 Create an empty queue Q; Create an empty list L; Create an
empty stack S;

2 Pmax ← 0; Tmv ← nil;
3 for ∀v ∈ Vd do
4 v.in← 0; v.done← 0; P (v)← 0; v.color← WHITE;

5 for ∀v ∈ Vr do
6 v.in← 0; v.done← 0; P (v)← 1; v.color← WHITE;

7 for ∀e = (x, y) ∈ E do
8 y.in← y.in + 1;

9 for ∀v ∈ Vp do
10 P (v)← p(v); Insert v to Q; v.color← GRAY;

11 L← Advance(G,Q);
12 if L is empty then
13 Pmax ← P (g); Tmax ← construct T ; goto 25;

14 i← 0;
15 i← i+ 1;
16 Push (L,G, i) to S;
17 L← Advance(G, {L[i]});
18 if L is empty then
19 if P (g) > Pmax then
20 Pmax ← P (g); Tmax ← construct T ;

21 if S is not empty then
22 Pop L,G, i from S; goto 15;

23 else goto 25;

24 else goto 14;
25 output Tmv, Pmax;

Theorem 1. Given an attack graph with n nodes, nd OR
nodes, and m edges. In the worst-case scenario, Algorithm 2
finishes in O(n+m) time, and Algorithm 1 finishes in O((n+

m) · nd!) time.

Proof. Algorithm 2 spends O(1) time on at most n nodes and
m edges. This is because a coloring system keeps track of the
visit state of a vertex, and it will never visit the same vertex
twice. The overall time complexity is O(n+m).

Algorithm 1 visits every node in a decision tree, in which
there are at most nd nodes at the first level, nd ·(nd−1) nodes
at the second level, and so on. There are at most nd such
levels, resulting in nd! leaf nodes in the tree. Each leaf node
corresponds to a particular sequence of OR nodes are chosen to
break the deadlocks, and for that sequence only, the algorithm
visits at most n nodes and m edges. Thus, the algorithm has
an overall time complexity of O((n+m) · nd!).

Remarks. The running time established in Theorem 1 is not
tight, and the actual time complexity varies greatly depending
on the graph layout. Specifically, the number of OR nodes
held in deadlocks determines the width of the decision tree,
while the number of deadlocks determines the tree’s height.
The theoretical upper bound only occurs when every OR node
in a graph is part of a deadlock, and they all depend on each
other. In a realistic setting, it is exceedingly unlikely that a
large portion of OR nodes are involved in deadlocks, and thus,
the running time of the exact algorithm would be acceptable.
Evaluation results in 6-B confirms this observation.
Algorithm 2: Advance(G,RQ)

Input: G = (Vp, Vd, Vr, E, p, g): an attack graph, RQ:
queue of nodes that were already visited

Output: L: a list of OR nodes that are in a deadlock
1 Create an empty list L;
2 while RQ is not empty do
3 Dequeue u from RQ; u.color← BLACK;
4 for ∀v ∈ u.adj with v.color ̸= BLACK do
5 temp← P (u) · p(u, v);
6 if (v ∈ Vd) then
7 if (v.done = 0) then
8 P (v)← temp · p(v); v.fail← 1− temp;
9 v.color← GRAY;

10 Insert u to v.parent; Insert v to L;

11 else
12 P (v)← (1− v.fail · (1− temp)) · p(v);
13 v.fail← v.fail · (1− temp);
14 Insert u to v.parent;

15 v.done← v.done + 1;
16 if v.done = v.in then
17 Remove v from L; Enqueue v to RQ;

18 if (v ∈ Vr) then
19 P (v)← temp · P (v); v.done← v.done + 1;
20 if v.done = v.in then
21 P (v)← P (v) ∗ p(v); v.color← GRAY;
22 Enqueue v to RQ;

23 output L;

5. A HEURISTIC FOR MVAT

In addition to the ExactMVAT algorithm, we design a
polynomial-time heuristic algorithm that solves the MVAT

4



Problem. We observe from Proposition 3.2 that adding a
predecessor node to an OR node vd has a diminishing marginal
return for P (vd) due to the multiplicative nature of the prob-
ability calculation. Therefore, a simple strategy for breaking
the deadlock can be choosing the OR node with the highest
cumulative success probability.
QuickMVAT uses this observation to obtain an approximate

for the MVAT Problem. Similar to MVAT, QuickMVAT visits
all primitive fact nodes Vp and use Advance to proceed as far
as it can. When a deadlock is encountered, it picks the node
(that is in the deadlock) with the highest cumulative success
probability, and resume the process. This process repeats until
the goal node is visited or when it runs out of nodes before
reaching the goal node.

Algorithm 3: QuickMVAT(G)

Input: G = (Vp, Vd, Vr, E, p, g): an attack graph
Output: Thu: an attack trace to g in G; Phu: cumulative

success probability of g in Thu

1 Create an empty queue RQ; Create an empty max priority
queue PQ;

2 Phu ← 0; Thu ← nil;
3 for ∀v ∈ Vd do
4 v.in← 0; v.done← 0; P (v)← 0; v.color← WHITE;

5 for ∀v ∈ Vr do
6 v.in← 0; v.done← 0; P (v)← 1; v.color← WHITE;

7 for ∀e = (x, y) ∈ E do
8 y.in← y.in + 1;

9 for ∀v ∈ Vp do
10 P (v)← p(v); Enqueue v to RQ; v.color← GRAY;

11 while RQ is not empty do
12 L← Advance(G, RQ);
13 Add all nodes v ∈ L to PQ, weighted by P (v);
14 if PQ is not empty then
15 Extract u from PQ; Insert u to RQ;

16 construct Thu

17 output Thu, P (g)

Theorem 2. Given an attack graph with n nodes, nd OR nodes
and m edges, Algorithm 3 finishes in O(n+m+ nd

2) time.

Proof. The algorithm spends O(n+m) time to initialize the
nodes in Lines 1 to 10. Even though Line 11 can be executed
for at most nd times; the algorithm visits no more than n
nodes and m edges in total. This is because the heuristic is a
greedy algorithm that does not backtrack, and its selection of
OR nodes at deadlocks is final. Therefore, Line 12 contributes
O(n+m) total regardless of the graph layout. Line 13 takes
O(nd) every loop iteration, and Line 15 takes O(log nd), so
the entire while loop takes O(nd

2) to finish. Thus, the overall
complexity of the Algorithm 3 is O(n+m+ nd

2).

6. PERFORMANCE EVALUATION

We implemented both algorithms to evaluate our proposed
exact and heuristic MVAT algorithms and tested them in gener-
ated attack graphs with randomized probabilities. We introduce
the topology and the probability derivation in Section 6-A and
present the evaluation results in Section 6-B.

A. Evaluation Setup

We evaluated the algorithms on generated attack graphs with
different sizes and edge densities. The graphs exhibit a sim-
ilar topology to those generated by Mulval in the seminal
paper [8]. Still, they can have an arbitrary number of nodes
and edges and ensure the presence (or absence) of cycles in
the graph. This way, we can explore the behaviors of the two
algorithms easily.

The generation process is mainly controlled by the follow-
ing parameters: np, nd, nr, and e for the number of primitive
fact nodes, derived fact nodes, rule nodes, and edges. First,
a graph with a specified number of nodes (of three kinds) is
populated, yielding a set of nodes V = {Vp ∪ Vd ∪ Vr}. To
ensure that the generated result contains at least one attack
trace, we track a set of reachable nodes (from the primitive
fact nodes), Vre, and it is initialized to Vp. The idea is that a
node is more likely to be part of an attack trace in the final
attack graph if a node is reachable.

Then, the program produces a set of edges E for the graph.
It generates a starter attack graph by randomly picking nodes
vp ∈ Vp and vd ∈ Vd. Two edges are added to the graph:
(vp, vr) and (vr, g), where g ∈ Vd is the goal node. This
graph is guaranteed to have an attack trace (vp, vr, g), and we
can build an attack graph from this starter graph. vr and g is
added to Vre

The remainder of the edge generation process goes as
follows. First, the program randomly selects a start node
u ∈ Vre. Depending on the type of vs, it randomly picks an
appropriate end node v. Specifically, in case u ∈ Vp or u ∈ Vd,
then v ∈ Vr. If u ∈ Vr, then v ∈ Vd. Before committing edge
(u, v) to the graph, the program checks to ensure that

1) (u, v) /∈ E,
2) the graph after adding (u, v) contains an attack trace,
3) if u ∈ Vr, then (u, v′) /∈ E,∀v′ ∈ Vd, and
4) optionally, the graph after adding (u, v) does not contain

a cycle.
The second criterion can be efficiently checked with the

SAT algorithm [11], and the third criterion is due to Mulval [8]
generates attack graphs with exactly one outgoing edge from
each rule node. The fourth criterion is only enforced if no
cycle is desired in the graph (and can be checked with, e.g.,
Kahn’s algorithm [4]). If (u, v) satisfies these criteria, it is
added to the graph, with v added to Vre. Otherwise, another
pair of nodes u, v is selected as described. The algorithms
do not assume these restrictions and can work on any attack
graph.

The program stops when the requested edge count e is met
or fails to find a suitable edge after many attempts. Finally,
the graph is cleaned to remove unreachable nodes and their
edges.

After generating an attack graph, we assign success prob-
abilities on all edges. The probability can be derived from
vulnerability scores like [6]. Since the graph is randomly
generated for our experiment, we draw the probabilities from a
normal distribution N(0.8, 0.2) for evaluation. Our algorithms

5



do not assume any distribution and work for any probability
assignment. All the nodes have a success probability of 1.

For this experiment, we generated graphs with 7 sizes, each
with the same number of np, nd, and nr. The sizes are 5, 10,
20, 40, 80, 160, and 320. Following the third criterion above,
it is calculated that an attack graph has at most nmax = (np+
nd) ·nr edges. We generated graphs with different densities d
for each graph size, where d = e/nmax. The densities are 0.1,
0.2, 0.3, 0.4, and 0.5. We generated 100 graphs with different
random seeds for each size and density combination.

The baseline of the experiment is an adapted version of the
SAT algorithm [11]. The difference is that instead of using
the height of a node as the key in the priority queue, it now
uses the cumulative success probability as the key. We refer
the interested reader to the [11] for details.

Because of the randomized nature of the graph, directly
comparing the cumulative success probability from different
algorithms at the goal node does not make sense. Instead, we
introduce φ′, the ratio between P (g) achieved by our proposed
algorithms and a baseline. This ratio φ′ is then averaged over
the 100 test cases to get the mean φ for each size and density
combination.

B. Evaluation Results and Analysis

We present evaluation results. Fig. 1(a) depicts the trend in
average execution time of three algorithms running the test
cases as the graph size increases. Note that the average is taken
over a set of 100 test cases and 5 density levels, resulting in
500 observations. The x axis is true to the scale to reflect the
trend better. Fig. 1(b) shows the φ of the three algorithms in
different graph sizes (averaged over 5 densities).

Fig. 1(a) reveals the growth of running time for the exact
is close to the heuristic, while both of them run above
SAT. This might be surprising given the theoretical worst-
case complexity of exact is factorial, while the worst-
case complexity of heuristic is polynomial. However, as
discussed in the remark of Theorem 1, the actual runtime of the
exact algorithm depends on the number of OR nodes stuck in
deadlocks and their connection. Thus, in an average generated
case, the topology does not cause a significant divergence in
running time of the exact and the heuristic algorithm.

Fig. 1(b) shows the heuristic algorithm performs satisfac-
torily compared to the exact algorithm. On average, its φ
reaches approximately (percentage) of φ of exact in graph
size of 5, and about (percentage) in graph size of 80. Both the
exact and the heuristic outperforms the SAT due to the
latter adding exactly one predecessor of an OR node to the
attack trace. It is worth noting that bigger attack graphs are
not supersets of smaller attack graphs, therefore the relative
ratio of the performace in each size category can vary.

7. CONCLUSION

In this paper, we study and analyze the attack trace in a
probabilistic attack graph. We define the MVAT problem, and
we present several characteristics of an attack trace in an attack
graph. We design an exact algorithm and a heuristic algorithm

0

2500

5000

7500

10000

0 100 200 300

Attack graph size (# nodes of each type)

A
ve

ra
g

e
 t

im
e

 (
m

s
)

Algorithm Exact Heuristic SAT

(a) Average runtime in graphs of different sizes

0

1

2

3

5 10 20 40 80 160 320

Attack graph size (# nodes of each type)

R
e

l.
 p

e
rf

o
rm

a
n

c
e

 (
S

A
T

 =
 1

)

Algorithm Exact Heuristic SAT

(b) φ in graphs of different sizes

Fig. 1. Evaluation results for the two algorithms.

to solve the MVAT problem. Our proposed solutions can be
applied to a wide range of problems, including the analysis
and hardening of and IoT network. Our experiment shows that
both our algorithms can correctly calculate an attack trace in
a variety of graphs, especially the ones that have cycles. The
heuristic algorithm is able to obtain good approximations of
the MVAT in polynomial time.

REFERENCES
[1] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “SoK: Security evaluation

of home-based IoT deployments,” in Proc. of IEEE S&P, 2019.
[2] CSIS, https://csis.org/programs/strategic-technologies-program/

significant-cyber-incidents.
[3] Z. Fang, H. Fu, T. Gu, P. Hu, J. Song, T. Jaeger, and P. Mohapatra, “IOTA: A

framework for analyzing system-level security of IoTs,” in Proc. of ACM/IEEE
IoTDI, 2022.

[4] A. B. Kahn, “Topological sorting of large networks,” Communications of the ACM,
vol. 5, no. 11, pp. 558–562, 1962.

[5] L. Munoz-Gonzalez, D. Sgandurra, A. Paudice, and E. C. Lupu, “Efficient attack
graph analysis through approximate inference,” ACM Transactions on Privacy and
Security, vol. 20, no. 3, pp. 1–30, 2017.

[6] NVD, https://nvd.nist.gov/vuln-metrics/cvss.
[7] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to attack graph

generation,” in Proc. of ACM CCS, 2006.
[8] X. Ou, S. Govindavajhala, A. W. Appel et al., “Mulval: A logic-based network

security analyzer.” in Proc. of USENIX Security Symposium, 2005.
[9] A. Sabur, A. Chowdhary, D. Huang, and A. Alshamrani, “Toward scalable graph-

based security analysis for cloud networks,” Computer Networks, vol. 206, p.
108795, 2022.

[10] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated generation
and analysis of attack graphs,” in Proc. of IEEE S&P, 2002.

[11] Y. Wan, X. Lin, A. Sabur, A. Chang, K. Xu, and G. Xue, “IoT system vulnerability
analysis and network hardening with shortest attack trace in a weighted attack
graph,” in Proc. of ACM/IEEE IoTDI, 2023.

[12] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An attack graph-based
probabilistic security metric,” in Proc. of the 22nd Annual IFIP WG 11.3 Working
Conference on Data and Applications Security, 2008.

6


