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Abstract—The availability of ubiquitous and heterogeneous
Internet-of-Things (IoT) devices in smart homes and their in-
teractions with users provide a unique opportunity to monitor,
understand, recognize, learn, and infer user activities for safety
monitoring, connected health, energy saving as well as other
disruptive services. Our analysis on IoT network traffic from
smart homes with a variety of IoT devices has discovered
that user activities often trigger overlapping traffic waves from
multiple IoT devices that are deployed near the activities. This
insight leads us to adopt wavelet analysis to decompose IoT
network traffic in smart homes into low, middle, and high
frequency bands that distinguish IoT traffic waves triggered by
user activities from background noises such as heartbeat signals
between IoT devices and cloud servers. Subsequently, we extract
a broad range of traffic features from these IoT traffic waves and
explore supervised machine learning (ML) algorithms to classify
various user activities with these features. Based on the labelled
user activities and IoT network traffic data collected from real
smart home environments, our experiments have demonstrated
that the ML-based algorithms are able to use IoT network traffic
to accurately infer various user activities in smart homes.

I. INTRODUCTION

The last decade has witnessed the rapid and ubiquitous
deployment of IoT devices in smart homes, smart buildings,
and smart cities, which have created unique opportunities to
improve the situation awareness in these environments for
safety monitoring and connected health [1], [2]. For example,
several recent studies [3], [4], [5] collect and analyze network
traffic of IoT devices for recognizing and inferring a variety
of user activities in smart homes. These studies on user
activity inference (UAI) rely on the accurate extraction of IoT
device events [6], [7] from the underlying network traffic, e.g.,
TCP/IP data packets, as well as the correct temporal sequences
of such device events. However, device malfunctions, packet
losses, and network latency dynamics [8], [9] often lead
to missing or out-of-order IoT device events, which creates
substantial challenges for these existing solutions.

To tackle this issue, this paper explores supervised machine
learning (ML) algorithms to directly infer user activities in
smart homes from IoT network traffic without relying on IoT
device events extracted from network traffic. Figure 1 illus-
trates the overall architecture of our proposed approach. The
first step is to collect IoT network traffic via programmable
routers in smart homes while recording and labelling user
activities [10] with timestamps that trigger heterogeneous IoT

devices. Subsequently, we analyze and characterize network
traffic of these IoT devices before, during, and after smart
home user activities and discover substantial and overlapping
traffic waves of IoT devices that are strongly correlated with
user activities in time and space, i.e., approximate locations in
the homes.

Based on our observations on diverse patterns of IoT
background traffic and IoT device event traffic triggered by
user activities, we adopt a wavelet analysis approach [11],
[12], inspired by prior work [13], [14] on signal analysis for
traffic anomalies, to learn and extract IoT network traffic with
low, middle, and high frequency bands. As IoT network traffic
waves triggered by user activities are often captured by the
synthesized low frequency signals, we are able to identify the
start and end timestamps of traffic waves due to user activities,
and extract and enigeer 19 features from these traffic waves.
The availability of these IoT network traffic features and the
corresponding labelled user activities as ground-truth leads us
to explore a suite of supervised ML-based algorithms such
as Naive Bayes, random forest, k-nearest neighbors (k-NN),
gradient boosting, and support vector machine (SVM), to infer
a wide range of user activities in smart homes.

To evaluate the performance of our proposed ML-based
solution for inferring user activities, we set up two real smart
home environments and collect network traffic from a number
of heterogeneous IoT devices. In addition, we identify 23
different user activities which could trigger at least one IoT
device deployed in these two homes. Our experiment results
show that our proposed ML-based algorithms are able to
accurately infer user activities. For example, best overall per-
forming algorithm, Naive Bayes, achieves an average accuracy,
precision, recall, F1 score, and AUC (area under curve) of
0.8783, 0.8801, 0.8783, 0.8779, 0.9498, respectively. The
ability of automatically and accurately inferring user activities
in smart homes is a crucial step to leverage today’s ubiquitous
and heterogeneous IoT devices for home safety and security,
remote patient monitoring, and independent senior living.

The contributions of this paper are summarized as follows:
• This paper introduces the problem of inferring user

activities via directly characterizing and learning network
traffic of heterogeneous IoT devices in smart homes.

• This paper explores a suite of supervised ML-based
algorithms to infer user activities with a set of features
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Fig. 1. The overall system architecture of our supervised ML-based approach for inferring user activities in smart homes.
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Fig. 2. The layouts of IoT device deployment in two real-world smart home experimental environments. The mappings between the abbreviation names and
the actual IoT devices are summarized in Table I.

generated from IoT network traffic.
• Our extensive experiments based on data-sets collected

from two real smart homes have demonstrated that the
ML-based algorithms are able to accurately infer different
user activities from IoT network traffic.

II. RESEARCH BACKGROUND

In this section, we first briefly describe the wide deployment
of IoT devices in smart homes and present the layout of
two smart home experimental environments for this study.
Subsequently, we discuss user activities triggering IoT devices
in these two smart homes and explain the temporal and spatial
correlations between user activities and IoT network traffic.

A. IoT Devices in Smart Homes

TABLE I
THE LIST OF HETEROGENEOUS IOT DEVICES DEPLOYED IN TWO REAL

SMART HOME EXPERIMENTAL ENVIRONMENTS FOR THIS STUDY.

Device Type Device Name Protocols Home Abbr.
Bulb TP-Link Bulb WiFi A & B TB

Camera Arlo Q Camera WiFi A AQ
Reolink Camera Ethernet A RC

Controller MyQ Garage Controller WiFi B GC& Sensor
Doorbell Ring Doorbell WiFi A & B RD
Lock August Lock WiFi A AL
Plug TP-Link Plug WiFi A & B TP

Sensor

D-Link Water Sensor WiFi A & B DW
Kangaroo Motion Sensor WiFi A & B KM
Smart Life Contact Sensor WiFi A & B SC
Tessan Contact Sensor WiFi A & B TC

Spotlight Ring Spotlight WiFi A RS

Recent advances in embedded systems, cloud computing,
and artificial intelligence have driven the rapid and wide
adoption of IoT devices in smart homes for a broad range of
innovative and disruptive applications such as energy saving,
safety monitoring, and home automation. Figure 2 illustrates
the deployment of 11 and 8 heterogeneous IoT devices in
our two smart home experimental environments, respectively.
These IoT devices provide many benefits and functions for
smart home users. For example, an outdoor motion sensor
near the front door could automatically notify residents on
the presence of guests or delivery drivers.
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Fig. 3. The temporal and spatial correlations between user activities and IoT
network traffic.

B. User Activities in Smart Homes

Given the dense deployment of diverse IoT devices in smart
homes, user activities often trigger multiple IoT devices in



parallel [15], [16], [3], [17]. For example, a resident entering
the house through the front door of the smart home A would
trigger various IoT devices including the outside IP cameras,
the smart lock and the contact sensor. For another instance, a
resident driving to the garage in the smart home B would
trigger the smart garage controller and the motion sensor.
Figure 3 illustrates network traffic of these IoT devices over a
5-minute time window during which these two user activities
have happened.

As observed in Figure 3, user activities often simultaneously
trigger multiple IoT devices which are deployed near the user
activities based on the physical layouts of IoT device deploy-
ment in the smart homes. In other words, user activities in
smart homes with dense IoT deployment have strong temporal
and spatial correlations with network traffic of IoT devices. In
addition, the IoT network traffic triggered by different user
activities exhibits distinct patterns in volumes, shapes, and
durations.

The observation of distinct IoT traffic patterns for differ-
ent user activities inspires us to explore supervised machine
learning algorithms to infer user activities from network traffic
of heterogeneous IoT devices in smart homes. In the next
three sections, we will describe how we i) collect and analyze
IoT network traffic via programmable routers in smart homes,
ii) explore a suite of machine learning algorithms to infer
user activities based on a broad range of IoT network traffic
features, and iii) evaluate the performance of our proposed
ML-based approach for inferring user activities with data-sets
collected from real smart homes.

III. IOT NETWORK TRAFFIC IN SMART HOMES

In this section, we first discuss how we collect and process
network traffic of IoT devices from smart homes, and then
shed light on distinct IoT network traffic waves triggered by
different user activities.

A. Collecting and Processing IoT Network Traffic in Smart
Homes

Similar to many prior research on IoT network traffic, this
study also relies on programmable routers in smart homes
to monitor, capture, and collect TCP/IP data packets which
are sent from or received by IoT devices in home networks.
Considering the privacy concerns of users in the experimental
environments, network traffic data collected by the system
does not carry any personal identifiable information (PII) such
as the external and public IP address of home routers, the
detailed packet payload, and the IP addresses of end systems
on the Internet such as cloud servers, which communicate
with IoT devices in smart homes. Figure 4 illustrates a simple
yet effective IoT network traffic collection system we have
developed for collecting, processing, and analyzing network
traffic in smart homes.

To differentiate heterogeneous IoT devices in the same
smart home network, we use the invariant physical media
access control (MAC) address to uniquely identify and repre-
sent each IoT device. Subsequently, we use the Dynamic Host

Configuration Protocol (DHCP) logs to identify the private
IP addresses of different IoT devices based on their unique
physical addresses. As a result, our data collection system has
the ability to recognize and separate the network traffic of
each IoT device for fine-grained and in-depth analysis. For
example, Figure 5 shows the observations of separate network
traffic for 11 individual IoT devices in smart home A during
an 8-hour time span.

Similar to previous studies on IoT background network traf-
fic and IoT device event traffic [18], our study also discovers
the persistent background traffic of IoT devices, e.g., periodic
heartbeat signals between IoT devices and remote servers in
the cloud, as well as IoT device event traffic which is generated
by the control commands on IoT devices, e.g., turning on or
off smart lights via the smartphone companion app by a home
user.

We adopt the same strategy used in [18] to identify the
background traffic of each IoT device in smart homes via cre-
ating an “idle” time period in which there are no interactions
between users and IoT devices. As illustrated in Figure 5, IoT
devices AL, AQ, RC, RD, RS, TB, and TP exhibit consistent
frequent background traffic, illustrated by the dotted lines,
during the 8-hour “busy” time window when both background
and non-background network traffic are observed, while IoT
devices DW, KM, SC, and TC send or receive little background
traffic during the same time period.

In this study, we are interested in studying non-background
network traffic for IoT devices, which are often triggered by
user activities in smart homes. Removing background traffic in
Figure 5 leads to the observation in Figure 6, which shows the
non-background network traffic for the same 11 IoT devices
as in Figure 5. As shown in Figure 6, the non-background
network traffic for the 5-device group DW, RC, RD, TB, and
TP as well as the 2-device group AQ and SC exhibits very
strong temporal correlations. Our in-depth analysis on these
correlations leads to two observations: i) the IoT devices in
the same groups are physically deployed very close in the
smart homes, and ii) these devices are often triggered by the
same user activities.

As the individual dots in Figure 5 and Figure 6 do not
convey the actual traffic volumes and dynamics during user
activities, we use Figure 7 with four typical IoT devices,
i.e., August Smart Lock, TP-Link Bulb, TP-Link
Plug, and Kangaroo Motion Sensor in smart home A,
to present both background network traffic over a short 20-
minute time window for these IoT devices as well as non-
background traffic due to different user activities during the
same 20-minute time window in smart home A. As illustrated
in Figure 7, the repeated smaller spikes for August Smart
Lock, TP-Link Bulb, and TP-Link Plug reflect back-
ground network traffic of these three devices, while the larger
spikes for all four devices capture non-background traffic due
to user activities in the smart home.
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Fig. 4. An IoT network traffic collection system via programmable routers in smart homes.
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Fig. 5. The observations of all network traffic for 11 IoT devices in smart
home A over an 8-hour time span. (cf. Table I for the mappings between
the abbreviation names and the actual IoT devices)
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mappings between the abbreviation names and the actual IoT devices)
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Fig. 7. The observations of IoT network traffic time series of four selected IoT devices, which are triggered by different user activities at different times in
smart home A. Each device is triggered by exactly one user activity during the time window.

B. Extracting IoT Network Traffic Waves Trigged by User
Activities

Our experiments on real smart home environments have
observed that user activities often trigger multiple IoT devices
in parallel due to their proximity. For example, Figure 8 shows
three separate spikes in the overall IoT network traffic in smart
homes, which exhibit strong temporal correlations with three
separate user activities during a 10-minute time window in
smart home A. As shown in Figure 8, the distinct patterns
of sudden IoT network traffic jumps for three different user
activities suggest the possibility of learning and recognizing
different user activities in smart homes via supervised ML
algorithms.

Our in-depth investigation on IoT network traffic during this
30-minute time window discovers that each of these traffic
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Fig. 8. The aggregated IoT network traffic waves due to three separate user
activities during a 30-minute time window in smart home A.



spikes is contributed by two or more IoT devices exhibiting
multiple traffic waves in parallel. More importantly, these
network traffic spikes contributed by user activities in Figure 8
trigger multiple IoT devices in parallel due to their close
proximity. Figure 9 breaks down network traffic in Figure 8
for each IoT device triggered by these three user activities. As
shown in Figure 9, AL, AQ, RD, RS, and TC are triggered by
the first user activity, KM and TB are triggered by the second
activity, and TP and DW are triggered by the third activity.

These observations in Figure 8 and Figure 9 confirm that
each user activity in smart homes leads to district network traf-
fic patterns and waves of IoT devices, and lead us to explore
multiclass classification algorithms for inferring different user
activities with each activity forming a unique class or label.

IV. INFERRING USER ACTIVITIES FROM IOT NETWORK
TRAFFIC WITH SUPERVISED ML ALGORITHMS

In this section, we first discuss how we extract and develop
a set of features from IoT network traffic waves for inferring
user activities. Subsequently, we describe how we explore a
suite of supervised ML algorithms for inferring user activities
based on our labeled data-sets from two real smart home
environments.

A. Feature Extraction from IoT Network Traffic Waves

In order to extract features from IoT network traffic for
inferring user activities, we need to first identify and extract
the start and end timestamps of network traffic spikes [19] for
IoT devices. Specifically, we adopt a change point detection
algorithm based on wavelet analysis [13] to locate the bound-
aries of individual traffic waves for each IoT device in smart
homes.

Unlike smartphones and end hosts such as desktops and
laptops in home networks, IoT devices typically have much
less noisy network traffic [5], [20] due to their simple and
specific functionalities. Prior studies on IoT devices network
traffic [20], [6], [5], [7] have revealed that smart home IoT
devices have periodical low-volume background traffic with
cloud servers, and occasionally these devices exhibit with
high-volumes of network traffic spikes due to user activities.
For example, our traffic analysis on August Smart Lock
device shows that the smart lock synchronizes with two
of the manufacturer’s cloud servers every 90 seconds and
105 seconds, and the lock periodically checks for the latest
firmware updates every 6 hours. However, compared with such
background traffic, the network traffic of the same smart lock
triggered by user activities is rarely observed due to the infre-
quent nature of user activities in smart homes. Our experiments
with other IoT devices lead to similar observations.

The above findings of IoT network traffic with varying fre-
quencies lead us to explore signal processing techniques [12],
[11], [14], [13] on IoT network traffic time-series for de-
composing different types of traffic, and most importantly for
extracting the boundaries of IoT network traffic waves caused
by user activities. Specifically, we adopt the wavelet analysis
approach, similar to [13], for learning and extracting network

traffic with low, middle, and high frequency bands due to
the strong similarity between volume-based network traffic
anomalies in [13] and IoT network traffic waves in this study.

Performing wavelet analysis on IoT network traffic collected
from smart homes has two complementary steps: i) decompo-
sition (also referred to as analysis) and ii) reconstruction (also
referred to as synthesis) [13]. The decomposition step extracts
a hierarchy of derived strata with varying frequencies from
the original signal of IoT network traffic s over a time period
t of length n. The multi-level wavelet decomposition splits
up the original signal with one low-pass sub band L(s) (also
referred to as the approximation level), and one or more high-
pass sub bands H1(s), . . . ,Hm(s), (m ≥ 1) (also referred
to as the fined-grained detail levels). In our experiments, we
choose m as 1 thanks to simple traffic patterns of IoT devices
in smart homes, which are mostly contributed by management
and maintenance traffic and device events. In addition, our
empirical experiments with m set in the range of [1, 5] obtain
similar results. The low-pass sub band can be further split into
L2(s) and H1L(s) with the same decomposition process. For
simplicity, we use HL(s) to denote H1L(s) throughout the
rest of this paper as we choose m as 1 in our experiments.
As such iteration proceeds, we obtain the derived signals,
i.e., wavelet coefficients, Li(s) and HLi−1(s)(i = 1, . . . , j),
where j denotes the number of iterations. The iteration process
stops at j when Lj(s) has few signals to be further split.

The reconstruction step runs the inverse of the multi-level
wavelet decomposition process with the same number of
iterations and assembles new and aggregated signals with
various wavelet coefficients generated from the decomposition.
Similar to the discrete wavelet transform process in [13], our
study also obtains the high-band, mid-band, and low-band
aggregated signals via synthesizing the wavelet coefficients
from the frequency level groups of [1], [2, 3], and [4, . . . , j],
respectively.

The top plot of Figure 10 illustrates the original signal,
i.e., network traffic volumes in bytes measured every one
second, of August Smart Lock in smart home A during
a 25-minute time window, while the bottom three plots of
Figure 10 show the decomposed high-band, mid-band, and
low-band signals during the same time period, respectively.
Our in-depth examination confirms that the synthesized high-
frequency signal captures very frequent IoT network traffic,
e.g., background device state synchronization. The synthe-
sized middle frequency signal represents network traffic which
periodically occurs but with larger time intervals, e.g., new
firmware checks and DHCP renewals, while the low frequency
part corresponds to IoT network traffic that has a low recur-
rence rate, e.g., unpredictable and infrequent IoT device events
triggered by user activities. More importantly, IoT network
traffic waves triggered by user activities are always captured
by the synthesized low frequency signal. In other words,
identifying the start and end timestamps of network traffic
spikes for IoT devices has naturally become a simpler problem
of extracting the timestamps of the synthesized low-frequency
signals with significant traffic volume increases and decreases,
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Fig. 9. The overlapping traffic waves from multiple IoT devices for the same user activities.
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Fig. 10. The original IoT network traffic signal of August smart lock over
a 25-minute time window as well as the decomposed high-band, mid-band,
and low-band signals via wavelet analysis.

as evidenced in Figure 10.
After identifying the overlapping network traffic waves from

two or more IoT devices, we extract and derive 19 features
from the aggregated network traffic from these IoT devices
for each manually-labeled user activity. These 19 IoT network
traffic features include 1) number of IoT devices with the
observed traffic waves, 2) number of total packets in the
waves, 3) number of total bytes in the waves, 4) average
bytes per packet in the waves, 5) overall time duration of the
user activity, 6) number of packets per second, 7) number of

bytes per second, 8) number of unique application protocols, 9)
number of unique application protocols over TCP, 10) number
of unique application protocols over UDP, 11) number of
network flow sessions, 12) number of network flow sessions
over TCP, 13) number of network flow sessions over UDP,
14) maximum duration of all network flow sessions, 15)
minimum duration of all network flow sessions, 16) average
duration of all network flow sessions, 17) maximum interval
of inter-packet arrival times among all sessions, 18) minimum
interval of inter-packet arrival times among all sessions, and
19) average interval of inter-packet arrival times among all
sessions.

These features are similar to prior research [21], [22], [23]
on IoT network traffic analysis. The availability of rich IoT
network traffic features and labeled user activities allows us to
explore supervised ML algorithms for inferring a wide range
of user activities in smart homes.

B. Supervised ML Algorithms for Inferring User Activities

Given the diverse set of user activities, we use multiclass
classification algorithms, rather than binary classification al-
gorithms, for inferring user activities. In this study, we focus
on several widely-used multiclass classification algorithms
including Naive Bayes, random forest, k-NN, gradient boost-
ing, and SVM, for classifying 23 different user activities in
our experiments. The first three algorithms inherently support
multi-class classification, while the last two algorithms are fun-
damentally binary classifiers. Thus, we transform the problem
of multiclass classifications into multiple binary classification
problems for gradient boosting and SVM via developing
23 binary classifiers with the “one-vs-the-rest” strategy for
performing multiclass classification.

To realize the best performance of each supervised ML
algorithm for inferring user activities, we exploit the parameter
tuning process to identify the optimal hyperparameters, e.g., k
in the k-NN algorithm, which are not found from the training
data but must be specified before running the algorithm. We
repeatedly run the ML algorithm with varying values for each
hyperparameter, e.g., trying the values from 1 to 10 for the
hyperparameter k in the k-NN algorithm.

To prevent the potential overfitting during the process of
tuning hyperparameters for these supervised ML-models, we
adopt the standard k-fold cross-validation precedure with



k = 10, which partitions the labelled data-sets into 10 folds.
For each of these 10 folds (referred to as the holdout fold),
we iteratively train the ML models with the remaining 9 (i.e.,
k − 1) folds as the training data set, while using the selected
holdout fold as the test data set. After the 10 iterations, we
calculate the average ML model performance and select the
optimal hyperparameters with the best performance for the ML
models. For ML-models with two or more hyperparameters,
we use the common grid search strategy for selecting the
optimal hyperparameter set.

V. EXPERIMENTAL EVALUATIONS

In this section, we first describe the experimental setup
of two real smart home environments for evaluating the
performance of inferring user activities from IoT network
traffic. Subsequently, we present the performance results of
running the algorithms on data-sets collected from these two
homes over a 2-month time period.

A. Experimental Setup

To evaluate our proposed approach of inferring user activ-
ities in smart homes via supervised machine learning algo-
rithms, we setup two real smart home environments, as illus-
trated in Figure 2, with heterogeneous IoT devices deployed
across both homes. We identify 23 common daily activities of
home users in these two homes. Table II lists these 23 user
activities and the associated IoT devices, which are deployed
near the locations where user activities happen.

For each user activity, we repeat 100 user experiments in
the smart home over multiple weeks, and manually record the
approximate timestamps of each user activity, which serve as
the ground truth of user activities for model training, testing,
and evaluations. The IoT network traffic collection system,
deployed at programmable routers in two smart homes, are
configured to continuously monitor and collect network traffic
of all smart home IoT devices.

B. Performance Evaluations

Based on the data-sets collected from these two smart home
environments, we evaluate the performance of our proposed
ML-based algorithms for inferring user activities with the
widely-used confusion matrix, i.e, true positive, true negative,
false positive, false negative, as well as the accuracy, precision,
recall, F1 score, and AUC metrics.

In our study, a true positive (TP ) suggests that our ML-
based algorithm correctly infers one user activity that has
happened, i.e., the inferred activity matches the ground truth,
while a true negative (TN ) indicates the algorithm does not
infer a user activity that has not happened. A false positive
(FP ) suggests that our ML-based algorithm incorrectly in-
fers one user activity that has not happened, while a false
negative (FN ) indicates the algorithm fails to infer one
user activity that has happened. The accuracy metric, A, is
calculated as A = TP+TN

TP+TN+FP+FN , while the precision (P)
and recall metrics (R) are calculated as P = TP

TP+FP and
R = TP

TP+FN , respectively. The F-1 score (F1), the harmonic

mean of precision and recall, is derived as: F1 = 2 × P×RP+R .
Lastly, the AUC metric quantifies the area under the receiver
characteristic operator curve (ROC), which plots true positive
rate vs. false positive rate of classification algorithms along
all classification thresholds. In our study, the AUC measure
essentially captures the performance of supervised learning
algorithms in distinguishing different user activities.

Table III summarizes the average accuracy, precision, recall,
F1, and AUC metrics for running supervised machine learning
algorithms for inferring all 23 user activities from two smart
home environments. As shown in Table III, our proposed ML-
based algorithms are very effective in inferring a broad range
of user activities in smart homes based on IoT network traffic.
For example, the best overall performing algorithm, Naive
Bayes, achieves an average accuracy of 0.8783, an average
precision of 0.8801, an average recall of 0.8783, an average
F1 score of 0.8779, and an average AUC of 0.9498.

VI. RELATED WORK

As the usage of IoT devices continues to grow in smart
homes, studying their network traffic has become increasingly
important in understanding the trends and dynamics of the
Internet ecosystem [24], [25], [26], [27], [28], [29]. A number
of research studies have been devoted to collecting, analyzing,
and characterizing network traffic patterns of IoT devices [20],
[18], [30], [31]. For example, the studies in [20], [18] introduce
an IoT traffic measurement framework to capture and analyze
incoming, outgoing, and internal smart home network traffic
to study traffic behavioral profiles of IoT devices, while
HoMonit [30] monitors smart home apps via collecting and
analyzing encrypted wireless network traffic of IoT devices,
and adopts a deterministic finite automaton (DFA) matching
algorithm to represent the interactions between the smart home
apps and IoT devices.

Recognizing IoT device types and models, e.g., smart
plugs and smart locks, has recently attracted significant inter-
ests [32], [33], [34] from the research community for anomaly
detection and security enforcement [35]. For example, the
study [32] uses the features from broadcast messages to
identify the types and models of IoT devices over public
WiFi networks, while IoT Sentinel [33] uses various traffic
features from TCP/IP data packets as IoT device fingerprints
for identifying the makes, models, and software versions
of IoT devices. Similarly, [34] collects network traffic from
different IoT devices over a 6-month time span, and uses a
multi-stage ML-based classifier with network traffic features
to identify these IoT devices.

A natural extension of understanding the IoT device types
is to detect the events of IoT devices, e.g., smart plugs ON, via
characterizing and modeling network traffic [7], [6], [36]. For
example, IoTAthena [6] generates the signatures of IoT device
events with the ordered sequences of TCP/IP data packets, and
designs polynomial-time algorithms to unveil the sequence of
IoT device events from IoT network traffic in smart homes.

Several recent studies have explored IoT network traffic
to extract the knowledge of the deployed environments, in



TABLE II
USER ACTIVITIES AND THE ASSOCIATIONS WITH IOT DEVICES IN SMART HOMES.

No. User Activity IoT Devices Triggered

1 A person without key entering the AL, AQ, RD, RS, TChome from the front door (day)

2 A person without key entering the AL, AQ, RD, RS, TChome from the front door (night)

3 A person with app access entering the AL, AQ, RD, RS, TChome from the front door (day)

4 A person with app access entering the AL, AQ, RD, RS, TChome from the front door (night)

5 A person with key entering the AL, AQ, RD, RS, TChome from thefront door (day)

6 A person with key entering the AL, AQ, RD, RS, TChome from thefront door (night)
7 A person ring the doorbell and leave (day) RD, RS
8 A person ring the doorbell and leave (night) RD, RS
9 A person checking the front door of the home (day) RD, RS
10 A person checking the front door of the home (night) RD, RS

11 A person with key leaving the home from AL, AQ, RD, RS, TCthe front door (lock the door) (day)

12 A person with key leaving the home from AL, AQ, RD, RS, TCthe front door (lock the door) (night)

13 A person with key leaving the home from AL, AQ, RD, RS, TCthe front door (do not lock the door) (day)

14 A person with key leaving the home from AL, AQ, RD, RS, TCthe front door (do not lock the door) (night)
15 A person appearing in the hallway of the home KM, TB
16 A person leaving the hallway of the home KM, TB
17 A person checking the living room’s camera streaming RC

18 A person entering the balcony from living room or RCentering the living from balcony (contact sensor alarm off)

19 An person entering the home from the RC, SCbalcony (contact sensor alarm on)

20 An person leaving the home to enter the RC, SCbalcony ((contact sensor alarm on)
21 A person checking water leakage DW, TP
22 A person getting out of garage to the outside. GC, KM
23 A person coming into the garage from the outside. GC, KM

TABLE III
PERFORMANCE EVALUATIONS OF INFERRING USER ACTIVITIES WITH

SUPERVISED LEARNING ALGORITHMS BASED ON DATA-SETS COLLECTED
TWO REAL SMART HOME ENVIRONMENTS.

Algorithm Accuracy Precision Recall F1 Score AUC
Naive Bayes 0.8783 0.8801 0.8783 0.8779 0.9498
Random Forest 0.8630 0.8639 0.8630 0.8619 0.9394
k-NN 0.7304 0.7343 0.7304 0.7295 0.9033
Gradient Boosting 0.8522 0.8545 0.8522 0.8519 0.9319
SVM 0.8261 0.8204 0.8261 0.8184 0.9198

particular, inferring user activities in smart homes for safety
monitoring, anomaly detection, and connected health [4], [3],
[17]. For example, Peek-a-Boo [4] uses the passive traffic
sniffing strategy to capture encrypted IoT network traffic for
detecting IoT device types and device events, and ultimately
infers user activities with traffic and device features extracted
from network traffic as well as device locations and times-
tamps. IoTMosaic [3] generates the signatures of diverse user
activities with sequences of IoT device events, and subse-
quently develops an approximate matching algorithm to infer
user activities from IoT device events extracted from network
traffic. The recent study in [17] formulates the problems of
Events to Activities (E2A) and Events to Activity Patterns
(E2AP) for discovering a sequence of user activities from an

ordered sequence of IoT device events in smart homes. For
solving the E2AP and E2A problems, [17] designs a two-phase
solution that combines a deterministic algorithm in Phase 1
for computing a small number of representative matches of
activity patterns and an unsupervised ML algorithm in Phase
2 for matching a compatible set of user activity patterns with
an optimal set of weights in a finite number of iterations.

Different from these prior studies, this paper explores IoT
network traffic directly to infer user activities without the
intermediate step of extracting IoT device events which could
be missing or out-of-order due to device malfunctions [35]
and varying network latency [8], [9], [3]. In addition, certain
IoT device events could be difficult to extract if their traffic
signatures are unknown or frequently updated.

VII. CONCLUSIONS AND FUTURE WORK

The last decade has witnessed the rapid and ubiquitous
deployment of heterogeneous IoT devices in smart homes,
which creates new opportunities and challenges in improving
environmental awareness and intelligence for a wide range
of services such as home safety, remote health monitoring,
and energy saving. In this paper, we explore supervised ML
algorithms to infer user activities in smart homes based on IoT
network traffic collected from programmable home routers.



Inspired by our experimental observations on distinct IoT
traffic waves due to different user activities, we first adopt
a wavelet analysis approach to extract the beginning and end
timestamps of IoT network traffic waves from the frequent
background and noisy traffic. Based on the labeled data-
sets of user activities in smart homes and the corresponding
IoT network traffic, we extract and design a wide range of
features from IoT network traffic waves for each activity,
and explore five widely-used supervised ML algorithms to
develop multiclass classifiers to infer various user activities.
Our experimental results have demonstrated our proposed ML-
based algorithms are able to accurately infer a wide range of
user activities in smart homes.
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