
Inferring User Activities from IoT Device Events in Smart Homes:
Challenges and Opportunities

Xuanli Lin, Yinxin Wan, Kuai Xu, Feng Wang, Guoliang Xue

Abstract—The ubiquitous deployment of IoT devices in smart
homes has led to growing research interests in studying the
home network traffic for various applications such as network
measurements, device profiling, and IoT device event inference.
Recent studies have shown that user activities can be inferred
from a home network using extracted device event logs. However,
existing solutions for user activity inference such as IoTMosaic
and E2AP have limitations when handling ambiguities caused by
device malfunctions. In this paper, we first identify the challenges
faced by the existing user activity inference algorithms and the
root causes of their poor performances on certain types of inputs.
We then show that useful information can still be obtained even
in situations where device malfunctions introduce ambiguities in
user activity patterns. We achieve so by designing an extension to
the existing algorithms. We also apply our extension in a digital
forensics application. Our extensive experimental evaluations
demonstrate that our solutions can effectively provide insights to
user activity inference despite the presence of indistinguishable
user activity patterns.

Index Terms—Internet-of-things, device events, user activity
inference, challenges and opportunities.

1. INTRODUCTION

The rapid growth and wide deployment of the Internet-of-
Things (IoT) have sparked their applications in many emerg-
ing and crucial fields such as industry automation, smart
city, and connected health. In particular, a variety of smart
home IoT devices are available on the market which bring
advances in home security, remote controlling, and intelligent
device management. The availability of heterogeneous IoT
devices in smart home environments has driven research in
network traffic measurement [15, 20, 23], device profiling
and classification [7, 8, 11, 12, 17, 25], and device events
extraction [1, 19, 21, 26].

Some recent studies have shown that it is possible to infer
user activities in a smart home where different kinds of
IoT devices are deployed by monitoring the home network
traffic [1, 22, 24]. The extraction of user activities in [22, 24]
relies on accurate identification of IoT device events from
the home network [19, 21] and is based on the assumption
that a user activity always generates a distinct and ordered
sequence of device events. However, missing and out-of-order
device events due to potential device malfunctions or network
instabilities bring substantial challenges to existing solutions.

To address the above issues, [22] proposes an approximate
signature matching algorithm that allows some of the device

All authors are affiliated with Arizona State University. Emails: {xlin54,
ywan28, xlin54, kuai.xu, fwang25, xue}@asu.edu. This research was sup-
ported in part by NSF grants 2007469, 2007083, 1816995, and 1717197. The
information reported here does not reflect the position or the policy of the
funding agency.

events in a user activity’s signature to be missing when
matching a user activity to its signature in the observed device
event sequences. On the other hand, [24] considers different
patterns of a user activity where some device events could
be missing, and proposes an unsupervised machine learning
technique for learning the optimal weights of all activity
patterns that result in the most accurate user activity inference.

In this paper, we study user activity inference in smart
homes by examining the challenges to existing solutions.
In particular, we present several impossibility results. We
show by examples that missing events (caused by device
malfunction, for example) could make different user activities
indistinguishable in the observed device events. Not surpris-
ingly, the accuracy of the existing inference algorithms such
as IoTMosaic [22] and E2AP [24] decreases when there
are activities that share the same device event sequence after
device malfunctions.

We show that even in the presence of ambiguous user
activity patterns, we can still obtain useful information by
designing an extension to the existing solutions. The key to
our approach is to identify the patterns that could be generated
by the user activities, and report all possible user activities that
share the same pattern. We demonstrate that this approach can
lead to effective solutions to an application in digital forensics.

The main contributions of this paper are the following:
• We perform a detailed analysis on challenges that affect

the accuracy of the existing activity inference algorithms
such as IoTMosaic [22] and the E2AP scheme [24].

• We propose an extension to the E2AP framework to
address some of the challenges.

• We present an application of the proposed changes in
a digital forensics setting to show that our approach
can provide useful information even in the presence of
indistinguishable user activities.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the problem of user activity inference in smart
homes and provides a high level overview of the E2AP
algorithm in [24]. Section 3 discusses the challenges to ex-
isting approaches in user activity inference and presents some
impossibility results. Section 4 explores the opportunities in
improving the performance of existing algorithms for user ac-
tivity inference. Performance evaluation results are presented
in Section 5. Section 6 discusses related works. Section 7
concludes the paper and outlines future research works.

2. PROBLEM FORMULATION AND THE E2AP SOLUTION

In this section, we present the Device Events to User Activity
Patterns (E2AP) problem studied in [24] and outline the

essential parts of the solution framework proposed in [24].
The materials presented here are needed in Section 3 where
we analyze the challenges to existing solutions, as well as in
later sections where we explore opportunities to improve upon
the existing solutions.

A. The E2AP Problem Formulation

As in [24], A = {A1, A2, . . . , A|A|} is used to denote
a set of user activities, where each user activity A ∈ A
can trigger a sequence of IoT device events S1(A) =
(eA1 , e

A
2 , ..., e

A
|S1(A)|) or a subsequence of S1(A) with some

missing device events. Each of such sequence of device events
that can be triggered by user activity A is called a possible
pattern of A. Let S(A) = {S1(A),S2(A), . . . ,S|S(A)|(A)}
be the set of all possible patterns of user activity A, where
{S2(A), . . . ,S|S(A)|(A)} are proper subsequences of S1(A).

Given a sequence of device events E = (e1, e2, . . . , em),
the E2AP problem aims to find a sequence of user activities
A = (A1, A2, . . . , A|A|) together with their patterns Skjj ∈
S(Aj) for j = 1, 2, . . . , |A|, such that Sk11 ∥Sk22 ∥ · · · ∥Sk|A||A| is
as close to E as possible. Here ∥ denotes the concatenation
binary operator.

B. The E2AP Solution Framework

To facilitate the understanding of this paper, we briefly de-
scribe the basic concepts and the main ideas of the solution
framework proposed in [24] for solving the E2AP problem.

A match of pattern Sk(A) = (eA,k1 , eA,k2 , . . . , eA,k|Sk(A)|) in
E is denoted by ψA,ki , i ∈ Z+, which is a strictly increasing
sequence of positive integers (ψA,ki,1 , ψ

A,k
i,2 , . . . , ψ

A,k
i,|Sk(A)|) such

that eψA,k
i,j

= eA,kj ,∀1 ≤ j ≤ |Sk(A)|. The interval of ψA,ki is

ψA,ki .interval = [ψA,ki,1 , ψ
A,k
i,|Sk(A)|]. A match ψA,ki is minimal

if there does not exist another match ψA,ki′ whose interval is
a proper subset of the interval of ψA,ki . A match ψA,ki is
lighter than another match ψA,ki′ if ψA,k

i,|Sk(A)| < ψA,k
i′,|Sk(A)|,

or ψA,k
i,|Sk(A)| = ψA,k

i′,|Sk(A)| and (ψA,k
i,|Sk(A)|−1

, ψA,k
i,|Sk(A)|−2

, . . . ,

ψA,ki,1) is lexicographically greater than or equal to
(ψA,k
i′,|Sk(A)|−1

, ψA,k
i′,|Sk(A)|−2

, . . . , ψA,ki′,1). If a match ψA,ki is
lighter than another match ψA,ki′ , then ψA,ki′ is heavier than
ψA,ki . Two matches ψA,ki and ψA,ki′ are equivalent if their
intervals are the same. All matches that are equivalent to each
other form an equivalent class. We use the lightest match
in each equivalent class as its representative. A two-phase
scheme is then designed in [24] for solving E2AP. We use the
following two examples to illustrate the main ideas of phase
I and phase II of the scheme in [24], respectively.

Example 1: Let E = (a, b, c, a, b, a, b, d, c), A = (A1, A2),
S(A1) = {(a, b, c), (a, b)}, and S(A2) = {(d, c)}. The
ground truth user activity sequence A is (A1, A1, A1, A2).
In phase I, E2AP applies a matching algorithm named
AkMatch to compute a sequence of representatives
of the equivalence classes for any given A ∈ A,
and any k ∈ {0, 1, . . . , |S(A)|. There are 7 matches
of S1(A1) = (a, b, c) in E whose indices are

(1, 2, 3), (1, 2, 9), (1, 5, 9), (1, 7, 9), (4, 5, 9), (4, 7, 9), (6, 7, 9),
and they form 4 equivalent classes: {(1, 2, 3)}, {(1, 2, 9),
(1, 5, 9), (1, 7, 9)}, {(4, 5, 9), (4, 7, 9)}, {(6, 7, 9)}, where
the representatives are marked in bold. Out of these
4 equivalent classes, 2 representative minimal matches
{(1, 2, 3)}, {(6, 7, 9)} will be found by AkMatch.
Similarly, AkMatch outputs 3 representative minimal
matches (1, 2), (4, 5), (6, 7) for S2(A1) and 1 representative
minimal match (8, 9) for S1(A2). □

Phase I only needs to be executed once which allows us to
focus on a much smaller subset of all matches without losing
critical information. However, the matches of two different
patterns identified by AkMatch may be mutually exclusive
with each other, thus resulting in collisions. An example is
the matches (1, 2, 3) of pattern S1(A1) and (1, 2) of pattern
S2(A1) in Example 1. To output the sequence of matches that
would most likely resemble the actual activity sequence while
preventing conflicts among them, [24] associates a weight to
each pattern such that a match of the pattern with higher
weight has higher priority. Given the assigned weights for
all patterns, phase II of the framework in E2AP adopts the
OMatch algorithm to find a sequence of compatible (not
mutually exclusive) matches that have the maximum total
weight.

In OMatch, a match is further characterized by a 5-tuple
(i, k, α, β, w) where i is the index of the user activity Ai, k
is the index of the pattern Sk(Ai) of Ai, α and β are the
starting and ending index of the match in E, and w is the
weight w(i, k) assigned for Sk(Ai). Given a sequence of 5-
tuples M, OMatch algorithm finds a subset Mw ∈ M that
does not conflict with each other and has the maximum total
weights. Here OMatch is essentially the dynamic program-
ming algorithm for maximum weighted interval scheduling.
The following example illustrates how OMatch works. Note
the settings in Example 2 are the same as Example 1.

Example 2: First, the representative matches in Exam-
ple 1 are sorted according to the β field which result in
M[1] = (1, 2, 1, 2, w(1, 2)), M[2] = (1, 1, 1, 3, w(1, 1)),
M[3] = (1, 2, 4, 5, w(1, 2)), M[4] = (1, 2, 6, 7, w(1, 2)),
M[5] = (2, 1, 8, 9, w(2, 1)), and M[6] = (1, 1, 6, 9, w(1, 1)).
Assume the weights are given as w(1, 1) = 2.0, w(1, 2) =
0.5, w(2, 1) = 0.5. OMatch starts with M[1], which is picked
because picking M[1] results in a larger weight than not
picking it, for it is the first match in M. M[2] is examined next,
which would conflict with M[1]. Because M[2].w = w(1, 1) >
w(1, 2) = M[1].w, M[1] is replaced by M[2]. M[3], M[4],
and M[5] are added because there are no match conflicts with
them yet. However, M[6] is picked by OMatch to replace both
M[4] and M[5] because M[4] and M[5] conflict with M[6] and
M[6].w = w(1, 1) > w(1, 2) + w(2, 1) = M[4].w + M[5].w.
OMatch thus outputs the matches Mw = (M[2],M[3],M[6])
which correspond to user activities (A1, A1, A1) and result in
the maximum total weight without any conflicts.

However, if the weight assignment is w(1, 1) =
1.0, w(1, 2) = 0.7, w(2, 1) = 0.7, OMatch will output
Mw = (M[1],M[3],M[4],M[5]) which correspond to user

activities (A1, A1, A1, A2). □
Example 2 shows that different weight assignments could

result in different sequences of user activities. To measure the
quality of the matches, [24] calculates the Levenshtein edit
distance between the device event sequence E and the device
event sequence assembled by concatenating the patterns of the
matched user activity sequence generated by OMatch.

For example, the device event sequence assembled
by the matches (M[2],M[3],M[6]) in Example 2 is
(a, b, c, a, b, a, b, c), whose edit distance from E is 1. On
the other hand, the the device event sequence assembled
by the matches (M[1],M[3],M[4],M[5]) in Example 2 is
(a, b, c, a, b, a, b, d, c) which has an edit distance of 0 from
E.

Thus it is crucial to find a set of weights so that OMatch
will output the matches whose concatenated patterns are as
close to E as possible. To address this problem, [24] designs
an unsupervised learning approach to learn a proper weight
assignment with the loss function set as the edit distance
between the assembled device event sequence and E. A
coordinated descent approach is adopted to optimize each of
the weights individually in a round-robin fashion until the
loss function stops decreasing. Detailed descriptions of the
algorithms can be found in [24].

3. UNDERSTANDING THE CHALLENGES

While both [22] and [24] show great promises in inferring user
activities from a sequence of IoT device events (obtained from
the network traffic using existing techniques such as [21]), the
accuracies of both approaches drop when the missing device
events result in different user activities correspond to identical
sequences of device events. This could happen, for example,
when there are device malfunctions.

The primary objectives of this paper are to understand the
challenges in inferring user activities in the face of many
missing device events, and to explore the opportunities where
we can address some of the challenges. We examine the
challenges in this section, and explore the opportunities in
Section 4. As we will see in this section, some of the
challenges are intrinsic to the problem itself. Therefore, instead
of trying to design algorithms for obtaining impossible results,
we should set more realistic goals and try to design algorithms
to obtain the best possible results.

A. Identical Patterns

Let S1(A1) = (a, b, c) and S1(A2) = (a, b). Suppose that
event c can be missing due to intermittent device malfunctions.
As such, A1 can trigger the sequence S2(A1) = (a, b), which
is a subsequence of S1(A1). Note that the sequences S2(A1)
and S1(A2) are identical. Hence, if we observe the pattern
(a, b), we cannot tell whether it is triggered by user activity
A1 or by user activity A2.

Suppose that the observed sequence of device events is
E = (a, b, a, b, a, b, c). Since we cannot reliably distinguish
between S2(A1) and S1(A2), we can find four distinct
sequences of user activity patterns that all resemble the input

E, i.e., (S1(A1),S1(A2),S1(A2)), (S1(A1),S1(A2),S2(A1)),
(S1(A1),S2(A1),S2(A1)), and (S1(A1),S2(A1),S1(A2)).
These four sequences of activity patterns correspond to
the sequences of user activities (A1, A2, A2), (A1, A2, A1),
(A1, A1, A1), and (A1, A1, A2), respectively.

Theorem 1: If two or more user activities share an identical
pattern P, then it is impossible to accurately infer (from the
sequence of device events) which user activity triggered a
sequence of device events that is identical to P. □

While the impossibility result in Theorem 1 seems to imply
that inferring user activities from device events is extremely
challenging, we can set more realistic goals in designing
algorithms to infer user activities. For a pattern P that is a
possible pattern for both user activity A1 and user activity
A2, we can claim with high confidence that P is triggered
by either A1 or A2. As we will see in the next section, such
information will be very useful in certain situations.

B. Ambiguous Combinations

Let S1(A2) = (a, b), S1(A3) = (c, d), and S1(A4) =
(a, b, c, d). It is apparent that S1(A4) can be formed by
concatenating S1(A2) and S1(A3).

Given the sequence of device events E = (a, b, c, d), two
possible sequences of user activity patterns can be inferred:
(S1(A2),S1(A3)) or (S1(A4)). The OMatch algorithm would
choose the pattern(s) whose weight is the highest, i.e. choose
(S1(A2),S1(A3)) if w(2, 1) + w(3, 1) > w(4, 1), and choose
(S1(A4)) if w(2, 1) + w(3, 1) < w(4, 1). As a consequence,
despite having the same resulting device events, the algorithm
may overlook occurrences of activities that are deemed less
important. Hence, we have the following impossibility result.

Theorem 2: If the concatenation of a sequence of user
activity patterns is identical to the concatenation of a different
sequence of user activity patterns (use P to denote this con-
catenation), then it is impossible to accurately infer (from the
sequence of device events) which sequence of user activities
triggered a sequence of device events that is identical to P. □

As we discussed at the end of Section 3-A, this impossibility
result does not stop us from exploring opportunities to infer
useful information. We will discuss these opportunities in
Section 4.

C. Empty Subsequences

Let S1(A2) = (a, b) and S1(A5) = (b). Suppose event b can
be missing, then user activity A2 also has a possible pattern
S2(A2) = (a). Similarly, user activity A5 also has a possible
pattern S2(A5) = (). Note that S2(A5) is an empty sequence.

Since S2(A5) is an empty sequence, a user activity inference
algorithm (such as the ones in [22] and [24]) can possibly
infer an arbitrary number of occurrences of user activity A5.
Therefore we have the following impossibility result.

Theorem 3: If a user activity A has a possible pattern that
is the empty sequence, then it is impossible to accurately infer
(from the sequence of device events) the occurrence(s) of user
activity A. □

The situation discussed in Theorem 3 may happen due to
device malfunctions. While this is unavoidable, we can deal
with this situation using a simple technical convention. For
possible patterns that are empty sequences, we simply ignore
all of them. As a result, the corresponding user activity/activi-
ties will not appear in our inferred result. While not ideal, this
is the best solution we can come up with.

4. EXPLORING OPPORTUNITIES

In the previous section, we discussed several challenging
types of input for the E2AP framework. They prevent the
algorithms from accurately inferring user activities from IoT
device events. In this section, we show that useful information
can still be obtained to answer certain queries regarding user
activities, even in scenarios where different user activities have
identical patterns due to device malfunctions.

A. Getting More Out of the Computed Activity Patterns

As explained in Section 3-A and Theorem 1, when two or
more activities correspond to the same sequence of device
events, it becomes impossible to reliably distinguish between
these activities using only the input device event sequence.
As a consequence, the algorithms in the E2AP present only
the activity with the highest weight, ignoring other possible
matches.

We can, however, use the proposed solution Sw from
the E2AP and perform an interpretation on top of
it, where different possibilities are accounted for. Here
Sw = (Sw[1],Sw[2], . . . ,Sw[|Mw|]), where Sw[j] =
SMw[j].k(AMw[j].i), j = 1, 2, . . . , |Mw|. Recall that Mw is the
output of OMatch. The approach is simple - we scan the
sequence Sw in order, and for each match Sw[j] in Sw, we
check if there are any activity patterns that have the same
sequence as Sw[j], and provide these patterns as alternatives
to the original solution along with Sw[j].

After this operation, we obtain a list Lj with all activity
patterns that have the same event sequence as Sw[j]. This list
can contain only Sw[j] if no other activity patterns have the
same event sequence as Sw[j]. Then we add each Lj to a
new sequence Sw, and return the sequence Sw when we finish
scanning Sw.

We call this interpretation E2AP+, and the approach is
illustrated in the example below.

Example 3: Consider the following input: E =
(a, b, c, d, a, b, c, d, e, a, b, c); A = {A1, A2, A3}; S1(A1) =
(a, b, c, d),S2(A1) = (a, b, c); S1(A2) = (a, b, c); S1(A3) =
(d, e).

Using E2AP, we obtain the following activity sequence:
Sw = (S1(A1),S2(A1),S1(A3),S2(A1)). That is, the algo-
rithm reports that activities (A1, A1, A3, A1) have occurred.

Since S2(A1) = S1(A2), it is possible that we come across
cases where S1(A2) instead of S2(A1) has occurred. Because
they correspond to the same pattern, we can provide S1(A2)
as an alternative to S2(A1) so both subsequences can be
considered.

Using this approach, we can expand the activity sequence
to the following: Sw = (S1(A1), [S2(A1) or S1(A2)],S1(A3),
[S2(A1) or S1(A2)]). This means one of the following activity
sequences has occurred: (A1, A1, A3, A1), (A1, A1, A3, A2),
(A1, A2, A3, A1), or (A1, A2, A3, A2). □

To evaluate the performance of E2AP+, we propose a mod-
ified edit distance algorithm that can work with the sequence
Sw where alternatives are provided with the original activity
subsequences, and it is listed in Algorithm 1.

Algorithm 1: CalcED(Sw,A)
Input: Sw

= (L1,L2, . . . ,L|Mw|): computed activity
sequence from E2AP+;
A = A1, A2, . . . , An: ground truth sequence of user
activities;

Output: edit distance between the two sequences
/* perform initialization on c */

1 for i := 0 to n do
2 c[i, 0]← i;

3 for j := 0 to |Mw| do
4 c[0, j]← j;

5 for i := 1 to n do
6 for j := 1 to |Mw| do
7 if Equivalent(Lj , Ai) then

/* Lj and Ai are equivalent, no
edit distance is added */

8 c[i, j]← c[i− 1, j − 1];

9 else
/* Lj and Ai are not equivalent,

add 1 to edit distance */
10 c[i, j]← min(c[i− 1, j − 1],

c[i, j − 1],
c[i− 1, j]) + 1;

11 output c[n, |Mw|].

The behavior of the Equivalent function on line 7
depends on the operation mode of CalcED. Here, we spec-
ify two modes of operations for CalcED: strict and
relaxed. In the strict mode, we count Lj and Ai being
equivalent if Lj only contains one activity pattern Sk(Ai′),
and Ai

′
= Ai, k ∈ {1, . . . , |S(Ai′)|}. In the relaxed mode,

we count Lj and Ai being equivalent as long as there exists
an activity pattern Sk(Ai′) in Lj , where Ai

′
= Ai and

k ∈ {1, . . . , |S(Ai′)|}.
As such, given the same input sequence Sw, the reported

performance from CalcED can differ drastically depending
on the operation mode. We detail the comparison of the two
modes in Section 5.

The E2AP+ we proposed in this section can be further
developed to solve problems that would be difficult otherwise
with the original E2AP framework. We show one of its usage
in a digital forensics setting in the following.

B. Application in Digital Forensics

Consider a smart home where its owners are interested in
knowing whether someone entered their home while they
are away. Using the smart home setup in [22], we focus on

Activity 1 to Activity 6 in Table II of [22] which correspond
to a person entering the home through the front door [without
key/using an app/using a key] at [day/night]. These user
activities are closely related to home security. Thus, we can
infer whether and when someone has entered the home by
looking for occurrences of Activity 1 to Activity 6 in the
device event sequence.

Given the requirements of this problem, the output of
E2AP may be unsatisfactory. As we explained in Example 3,
when multiple activity patterns share the same device event
sequence, E2AP finds only one of the possible activity
patterns. However, in the digital forensics scenario, the
owner might be interested in all possible occurrences of
a user activity, and the E2AP approach results in the loss
of information. Therefore, we present two approaches that
alleviate this issue in the following sections.

The FindAct Approach
The first approach is a match finding method that incorporates
the E2AP+ discussed in the previous section. Note that in this
scenario, we are effectively using the relaxed metric because
it is better to have false positives than to miss actual activity
occurrences. This approach is presented in Algorithm 2.

Algorithm 2: FindAct(Sw,S, A)
Input: Sw = (Sw[1], Sw[2], . . . , Sw[|Mw|]): sequence of

matched activities from E2AP with their timestamps
t1, t2, . . . , t|Mw|;
S: set containing all activity patterns;
A: the activity we are interested in;

Output: T: list containing timestamps of all possible
occurrences of A in Sw

1 Sw ← ();
2 for j := 1 to |Mw| do
3 Lj ← (Sw[j]);

/* Find all activity patterns that are
equal to Sw[j] */

4 for i := 1 to |S| and k := 1 to |S(Ai)| do
5 if Sw[j] = Sk(Ai) then
6 Lj .append(Sk(Ai));

7 Sw
.append(Lj);

/* Find all occurrences of A in the
expanded activity pattern sequence */

8 T← ();
9 for j := 1 to |Mw| do

10 foreach Sk′
(Ai′) in Sw

[j] do
11 if Ai′ = A then
12 T.append(tj);

13 output T.

The algorithm works as follows. We first use E2AP+ on a
sequence of activities Sw found by the E2AP to construct a
sequence Sw of activity patterns with their alternatives. The
new sequence, along with timestamps for each activity, can
be used to determine the times when a particular activity
may have happened. If we are interested in when activity

A took place, we scan Sw and check whether activity A
possibly occurred at time tj in Sw[j] (either as a single activity
or among the list of possible activities). If we find activity
A in Sw[j], we add the corresponding timestamp tx to the
list of results. The resulting list T thus contains all possible
occurrences of activity A given Sw.

To illustrate Algorithm 2 as well as the subsequent algo-
rithm in this section, we will use the following setting where
E is illustrated as:

index 1 2 3 4 5 6 7 8 9 10 11
event b c a b a b c d c b c
time 1 5 6 7 12 14 15 18 22 25 28

Note the notion of time here: in [24], the time attributes are
present in E but they were unused, as the main focus was to
infer a chronologically correct sequence of activities without
considering actual timestamps of the activities. Here, we define
the timestamp of a match of an activity to be the timestamp
of the first device event in that match.

Further, let A = {A1, A2} where S(A1) = {(a, b, c), (b, c)}
and S(A2) = {(b, c)}. The ground truth activity sequence with
timestamps is A = ((A2, 1), (A1, 6), (A1, 12), (A2, 25)).

Example 4: Suppose we are interested in occurrences of
activity 2. Using the settings laid out above, we first run E2AP
and the algorithm outputs Sw = ((S2(A1), 1), (S1(A1), 12),
(S2(A1), 25)).

We scan Sw and find that S2(A1) = S1(A2), thus we add
S1(A2) as an alternative to S2(A1). There are no alterna-
tives to (S1(A1). Thus, after running E2AP+, we find the
following sequence of activities Sw = (([S2(A1),S1(A1)], 1),
([S1(A1)], 12), ([S2(A1),S1(A1)], 25)).

We then conclude that activity 2 may have taken place at
time 1 and 25, which fully matches the ground truth. Note
that activity 2 was not originally in Sw, but we were able to
uncover it with FindAct. □

This example shows that Algorithm 2 can find some occur-
rences of a user activity that would otherwise be missing in the
original E2AP. Algorithm 2 however does not fundamentally
change the match finding strategy in E2AP, but only expands
on its results. As such, if we miss an activity completely,
FindAct would be unable to recover relevant information.
For example, if we are instead interested in finding activity 1,
then either way we can only get the occurrence at time 12,
but not the occurrence at time 6.

This observation prompts the need for an alternative match
finding strategy where all occurrences of the user activity we
are interested in are considered.

The WMatch Approach
The second approach attempts to find the timestamp of all
possible occurrences of user activity A using a sequence
of device events E. However, we cannot accept all matches
because the occurrences of activity A are bounded in a time
frame. For example, if the average duration for “a person
entering the home through the front door” is 10 seconds, it
would not make sense to include matches that are 5 minutes

long. Therefore, a duration threshold is necessary to indicate
a duration above which the activity is unlikely to occur.

Taking this consideration into account, we add the time
duration constraint to the problem of detecting occurrences of
activities in a given device event sequence. Here an occurrence
of an activity is defined by its start time tα. Let A ∈ A be the
activity we are interested in. This activity can correspond to
one of its possible patterns in S(A). Let E be a sequence of
device events (with their timestamps), and let θ be a positive
real number that represents the maximum duration threshold
(we do not include A in the results if it spans longer than this
duration).

A subsequence E′ in E (with start time tα and end time tβ)
is a time-constrained match to Sk(A) if both of the following
criteria are met:

• E′ is a match to Sk(A) (according to the definitions in
Section 2);

• tβ − tα ≤ θ.
To find all time-constrained matches for the activity of inter-

est using the device event sequence E, we design the WMatch
algorithm, listed in Algorithm 3. The algorithm, though based
on AkMatch from the E2AP, has two distinctions from it.

First, instead of scanning the whole input event sequence for
matches at once, we scan only a small subsequence at a time.
Specifically, from a starting index x, we scan events from ex
up to the event with the timestamp no larger than tx+ θ. This
enforces the duration threshold we impose on the matches.

Second, we search for the heaviest time-constrained matches
rather than the lightest matches in these subsequences.

Finding the heaviest time-constrained matches means that
we would find the longest possible duration (under the time
threshold) for the activities we are interested in. This ensures
we do not miss out possible time period when the activity
would be still ongoing.

Example 5: Using the example settings in Section 4-B,
we perform matching for S1(A1) = (a, b, c). The following
matches can be found: (3, 4, 7), (3, 4, 9), (3, 4, 11), (3, 6, 7),
(3, 6, 9), (3, 6, 11), (3, 10, 11), (5, 6, 7), (5, 6, 9), (5, 6, 11),
(5, 10, 11).

In heaviest first order, we have (3, 4, 11), (3, 6, 11),
(3, 10, 11), (5, 6, 11), (5, 10, 11), (3, 4, 9), (3, 6, 9), (5, 6, 9),
(3, 4, 7), (3, 6, 7), (5, 6, 7). □

We first explain the data structures used in Algorithm 3.
• c is an integer matrix of m + 1 rows by η + 1

columns. Each filled entry corresponds to |LCS(E(iµ : i),
Sk(A)(1 : j))|.

• iµ is the start index (on E) of the current search.
• iν is the last index (on E) where Sk(A)[η] is found.
• D is a sequence that stores time-constrained matches

found by the algorithm. append operation adds a new
match to the sequence at the end.

• l is an integer that denotes the index number of the next
match.

• hl is a sequence containing the l-th match. prepend
operation adds a new element to the front of the sequence.

Algorithm 3: WMatch(E, A, k, θ)
Input: E = (e1, e2, ..., em): input sequence of device events

with their timestamps t1, t2, ...tm;
A: activity of interest;
k: pattern index of activity A;
θ: duration threshold for A;

Output: D: a sequence of matches found, sorted by their
order of occurrence;

/* perform initialization */
1 η ← |Sk(A)|; i← 1; l← 0;D← ();
2 iµ ← 1;
3 while iµ ≤ m do

/* search for the next suitable
starting point */

4 while iµ + 1 ≤ m and eiµ ̸= Sk(A)[1] do
5 iµ ← iµ + 1;

6 i← iµ; iν ← 0;
/* assign 0 to all entries in c */

7 c[i, j]← 0, 1 ≤ i ≤ m, 1 ≤ j ≤ η;
/* iterate through events till we hit

max duration allowed */
8 while i ≤ m and ti ≤ tiµ + θ do
9 for j := 1 to η do

10 if ei = Sk(A)[j] then
11 c[i, j]← c[i− 1, j − 1] + 1;
12 if j = η then
13 iν ← i;

14 else
15 c[i, j]← max(c[i, j − 1], c[i− 1, j]);

16 i← i+ 1;

/* check if a match is found */
17 if c[i− 1, η] = η then
18 l← l + 1;hl ← (); row ← i− 1; col← η;

/* backtrack to reconstruct the
match */

19 while col > 0 do
20 if col = η then
21 hl.prepend(iν);
22 col← col − 1; row ← row − 1;

23 else
24 while c[row − 1, col] = c[row, col] do
25 row ← row − 1;

26 hl.prepend(row);
27 col← col − 1; row ← row − 1;

28 D.append(hl);

29 iµ ← iµ + 1;

30 output D.

The flow of Algorithm 3 is the following. Lines 1, 2, 6, 7
perform initialization on the data structures. The algorithm
then enters a while loop (lines 3-29) which operates on a
floating start index iµ. In lines 4 and 5, we find the next
suitable starting index which has eiµ = Sk(A)[1], the first
event in Sk(A). This ensures we do not waste time on start
indexes that would not yield correct results. Once such starting
index is found, we proceed to perform matching till we either
hit the end of the event sequence E or the match found would

exceed the maximum allowed duration θ. In lines 8 to 16, we
dynamically find the length of LCS between E(iµ : i) and
Sk(A)(1 : j). This ensures that we find the heaviest time-
constrained matches of Sk(A) in the current search area. Note
that in lines 12 and 13, we keep track of iν , which is the most
recently discovered index where eiν = Sk(A)[η]. This is done
to facilitate backtracking once we find a match.

Then, in line 17 we check whether a match is found. If
|LCS(E(iµ : i),Sk(A))| is equal to the length of |Sk(A)|, a
match is found for Sk(A) and we proceed to backtrack and
reconstruct the match in lines 18 to 28. First, we set the end of
the match to iν , which ensures the match we reconstruct is the
heaviest. We then proceed to backtrack the rest of the match
till we find all events in Sk(A). The new match is added to
the list of matches in line 28, and we move the start index
iµ forward by one in line 29. This guarantees the next match
found is different from the previous one.

Example 6: Using the same example setting in Section 4-B.
Suppose we are interested in activity A1, with its device
event pattern S1(A1) = (a, b, c). Additionally, we allow for
a duration threshold θ of 10. The following table illustrates
the algorithm using this example. Note that the first column
and the first row correspond to event indices in E and S1(A1),
respectively. The second column shows each event in E
with its timestamp in the (event, timestamp) format, while
the second row shows the events in S1(A1). The rest of
the table shows the length of LCS of the two sequences:
|LCS(E(iµ : i),S1(A1)(1 : j))| for each coordinate (i, j).

TABLE I: Running examples of WMatch with iµ = 3 and
iµ = 5.

1 2 3
a b c

1 (b, 1) 0 0 0
2 (c, 5) 0 0 0
3 (a, 6) 1 1 1
4 (b, 7) 1 2 2
5 (a, 12) 1 2 2
6 (b, 14) 1 2 2
7 (c, 15) 1 2 3
8 (d, 18) 0 0 0

...

(a) iµ = 3

1 2 3
a b c

...
4 (b, 7) 0 0 0
5 (a, 12) 1 1 1
6 (b, 14) 1 2 2
7 (c, 15) 1 2 3
8 (d, 18) 1 2 3
9 (c, 22) 1 2 3

10 (b, 25) 0 0 0
11 (c, 28) 0 0 0

(b) iµ = 5

We start with iµ = 1. Since e1 ̸= S1(A1)[1], we skip
forward to the next starting index. Similarly e2 ̸= S1(A1)[1],
and we skip index 2 as well. On iµ = 3, we find that
e3 = S1(A1)[1]. We proceed to look for the heaviest match
from the 3rd event up till the last event e′ with te′ ≤ t3+θ. In
this case it is event 7 at timestamp 15 (t7 = 15 < 6+10). As
shown in Table Ia, we have shaded the area from index 3 to
7 where the search takes place. We then begin to perform
matching. At the end of the current search area, we have
c[7, 3] = 3 = |S1(A1)|. This indicates a time-constrained
match of S1(A1) is found. Note that this iteration terminated
because we would be running over the duration threshold if
we continue to event 8, not because we found a match.

Since a match is found, we backtrack to reconstruct the
heaviest match. We start with assigning the saved iν index

to hl[3]. Recall that iν corresponds to the index on E where
Sk(A)[η] last occurred. In this case it is S1(A1)[3] = c that
last occurred on index 7. We then find the elements in the
heaviest match, resulting in b on index 4, and a on index 3.
The match is thus (3, 4, 7) that starts at time 6 and ends at
time 15.

Likewise, we can find another time-constrained match
(5, 6, 9) that starts at time 12 and ends at time 22, as
illustrated in Table Ib. We continue to increment iµ and
eventually we reach the end of the input sequence E.
The algorithm terminates with two time-constrained matches:
{(3, 4, 7), (5, 6, 9)}. □

As illustrated in Example 6, we are able to find both
occurrences of activity 1 using WMatch. We further evaluate
the performance of both Algorithms 2 and 3 in the following
section.

5. EXPERIMENTAL EVALUATIONS

In this section, we present the evaluation results for our
proposed solutions. We first introduce our experiment settings,
and then we present the results of the performance evaluation
on the E2AP+ in two modes of CalcED. We also compare the
performance of FindAct, WMatch, and IoTMosaic from
[22] in the digital forensics setting in Section 4.

A. Experiment Setting

To evaluate the performance of the algorithms, we made
use of the activity and event sequences from [22] that were
obtained in a real-life smart home test bed. The sequences
are divided into three lengths, 387, 1494, and 2959 activities,
corresponding to the first week, first month, and full two
months of the experiment. We designate these the real data,
in which there are 21 different user activities involving 11
unique IoT devices and 25 device events. Detailed descriptions
for these activities, devices, and events can be found in [22].

We analyzed the real data, and generated a synthetic
dataset with the characteristics of the real data. Specifically,
the distributions of the activities are roughly the same in
the synthetic data and the real data. The duration for each
occurrence of an activity Ai is given by a random variable Θi
whose density is given by a normal distribution N ∼ (µi, σ

2
i).

The parameters of this distribution are calculated using the
samples of Ai in the real data. These procedures ensure the
test synthetic data retains most characteristics of the real-world
data while introducing some randomness. The synthetically
generated data has lengths of 387, 1494, 2959, and 10000 to
better illustrate and compare the results with [24] and [22].

For each of the four different lengths of user activity
sequence, we generated two categories of test cases with differ-
ent difficulty levels: (I) easy, where there are no ambiguities
in activity mappings, which is the same as the synth dataset
in [24]; (II) hard, where around 29% of user activities have
patterns that share the same sequence of device events. We
refer to these dataset as the synth-new data.

B. Performance Evaluation of E2AP+

First, we evaluate the performance of the E2AP+ using the
synth-new dataset introduced above. The performance is
evaluated using CalcED in both the strict mode and the
relaxed mode. We also ran the original E2AP with a normal
(Levenshtein) edit distance algorithm for comparison. As
illustrated in Table II, E2AP, E2AP+ (strict), and E2AP+
(relaxed) all performed well with the test cases of the easy
difficulty level, which is consistent with the findings from [24].
The algorithms also have the same accuracy in inferring the
user activities for the easy level dataset because there is no
ambiguity in it.

TABLE II: Evaluation results of E2AP and E2AP+ on the
synth-new dataset.

Difficulty Len Accuracy
E2AP E2AP+(strict) E2AP+(relaxed)

Easy

387 0.9959 0.9959 0.9959
1494 0.9959 0.9959 0.9959
2959 0.9964 0.9964 0.9964

10000 0.9959 0.9959 0.9959

Hard

387 0.6849 0.4310 0.9997
1494 0.6848 0.4338 0.9994
2959 0.6844 0.4339 0.9996

10000 0.6857 0.4347 0.9997

As the difficulty level increases, the accuracies of E2AP+ in
strict mode as well as the original E2AP drop significantly.
For example, running the E2AP achieves the accuracy of
0.9959 on the dataset of easy level whose length is 10000,
but only has an accuracy of 0.6857 on the dataset of hard
difficulty with the same length. However, running E2AP+ in
relaxed mode results in high accuracy for all difficulty
levels and activity lengths.

This result does not mean using the relaxed mode of
CalcED is always better, but it shows that, if our use case
requires looking for all possible occurrences of a user activity,
we can tolerate false positives in exchange for finding all
potential occurrences of an activity. An example is the digital
forensics in Section 4. In this situation, E2AP+ can provide
substantially more information than E2AP.

C. Performance Evaluation of FindAct and WMatch

We implemented the FindAct algorithm and the WMatch
algorithm and evaluated their performance on the synthetic
dataset. We focused on Activity 1 to Activity 6 in [22]
and [24], which relate to home security and share some
common device events in their patterns. When comparing the
inferred user activity sequence from the algorithms with the
ground truth activity sequence, we allowed up to δ seconds
of difference in their timestamps to account for asynchronous
clocks, network latency, and variations in user behaviors.

For WMatch, we tested the algorithm using two sets of
θ values. Here, because each kind of activity has different
duration, we assign different θ values to each kind of activity.
The θ value for activity Ai is determined by a quantile function
FΘ(θ) := Pr(Θi ≤ θi) = p. Here Θi is the random variable
described in Section 5-A and p is the percentile parameter.

Intuitively, a higher p value yields higher θi and a lower p
value yields lower θi.

Table III illustrates the evaluation results of WMatch,
FindAct, and IoTMosaic (k ≤ 5) from [22] on the syn-
thetic dataset with δ set to 1 second and 3 seconds. Numerical
results are sums over a total of 100 test cases. The Correct
column lists the number of occurrences of Activities 1-6 in
the ground truth sequences that are correctly inferred by the
respective algorithm, the Missed column lists the occurrences
that the algorithm failed to infer, and the Recall column
lists the ratio of correctly inferred activity occurrences over
all activity occurrences in the ground truth. Note that for
IoTMosaic both δ and p are not applicable, as its matching
algorithm is different from WMatch and FindAct.

We can note two distinct trends in the results. First, the
algorithms perform better in easy dataset compared to hard
dataset. This conforms to our initial expectation as more
ambiguity in the data adds to the challenges we discussed
in Section 3. Second, it is apparent that a higher δ value
significantly improves the recall of the WMatch and the
FindAct algorithms. It should be noted that the outputs of
the algorithms are not changed by different δ values. Instead,
we change the ”strictness” that determines whether a proposed
match is accepted as a correct answer. However, we have to
carefully decide on an appropriate δ because as δ gets larger,
the results lose precision. For example, if we let δ = 60
seconds, we allow matches up to 1 minute away from the
ground truth to be counted as correct. Even if the recall may
turn out to be very high for some cases, the results are too
imprecise to be useful. For our digital forensics scenario, we
consider δ = 3 seconds to be satisfactory.

For WMatch, we note that it performs better at the higher p
value, which is expected. As indicated above, higher p values
yield higher θi values, which allows more matches to be found.
The performance of WMatch is also consistent across both
difficulties, with hard cases causing little degradation in the
recall. It is important to understand that the higher the value
of θi is, the more likely that WMatch finds a invalid match for
activity i. Similar to δ, p needs to be set up appropriately to
the situation in order to achieve a good balance between recall
and accuracy. At δ = 3 and p = 0.9999, we find that WMatch
outperforms FindAct and IoTMosaic in both easy and
hard datasets. At δ = 3 and p = 0.8, we find that WMatch
outperforms FindAct and IoTMosaic in hard test cases,
but it performs slightly worse than the two algorithm in easy
test cases.

Thus, we can conclude that all three algorithms can perform
well on dataset with no ambiguity. For dataset with a lot
of patterns sharing the same event sequence such as hard
dataset, WMatch can still perform well under well-configured
p and δ values.

6. RELATED WORKS

With heterogeneous IoT devices now deployed in smart
homes [15], researchers from different communities have been
working on analyzing the home network traffic [1, 7, 8, 11,

TABLE III: Evaluation results of WMatch with p = 0.8 and p = 0.9999, FindAct, and IoTMosaic (k ≤ 5) on the
synth-new dataset (sums over 100 cases).

δ = 1 δ = 3
Algorithm Difficulty Len Correct Missed Recall Correct Missed Recall

WMatch
p = 0.8

Easy

387 1864 6864 0.2136 7522 1206 0.8618
1494 7175 27039 0.2097 29535 4679 0.8632
2959 14361 54042 0.2099 59017 9386 0.8628

10000 47957 182468 0.2081 199081 31344 0.8640

Hard

387 1788 6940 0.2049 7356 1372 0.8428
1494 6973 27241 0.2038 28967 5247 0.8466
2959 13815 54588 0.2020 57639 10764 0.8426

10000 46921 183504 0.2036 194377 36048 0.8436

WMatch
p = 0.9999

Easy

387 2266 6462 0.2596 8727 1 0.9999
1494 8589 25625 0.2510 34210 4 0.9999
2959 17300 51103 0.2529 68395 8 0.9999

10000 57582 172843 0.2499 230397 28 0.9999

Hard

387 2215 6513 0.2538 8728 0 1.0000
1494 8497 25717 0.2483 34207 7 0.9998
2959 17016 51387 0.2488 68395 8 0.9999

10000 57713 172712 0.2505 230395 30 0.9999

FindAct

Easy

387 2041 6526 0.2382 7842 725 0.9154
1494 7700 25811 0.2298 30690 2821 0.9158
2959 15581 51454 0.2324 61450 5585 0.9167

10000 51817 173895 0.2296 206745 18969 0.9160

Hard

387 1185 7286 0.1399 4908 3563 0.5794
1494 4506 28639 0.1359 18935 14210 0.5713
2959 9169 57191 0.1382 38255 28105 0.5765

10000 30698 192699 0.1374 127926 95471 0.5726

IoTMosaic
k ≤ 5

Easy

387 8675 53 0.9939
1494 33966 248 0.9928
2959 67860 543 0.9921

10000 228764 1661 0.9928 (δ does not apply to IoTMosaic)

Hard

387 3667 5061 0.4201
1494 14778 19436 0.4319
2959 29418 38985 0.4301

10000 99269 131156 0.4308

12, 15, 17, 19–23, 25, 26], detecting design flaws in smart
home IoT ecosystem [2, 9, 10, 13, 16, 18, 27], and security
monitoring [3–6, 14].

The pervasive network traffic generated by a variety of smart
home IoT devices has enabled deep understanding and multi-
dimensional profiling of IoT devices’ traffic patterns. A frame-
work is proposed by [20] to collect all incoming, outgoing, and
internal network traffic of IoT devices using programmable
home routers. The traffic is further characterized and mined for
extracting spatial, temporal, entropy, and cloud service patterns
of IoT devices in edge networks. The authors of [15] built up
smart home testbeds in laboratory environments to highlight
the potential sensitive information exposures via analyzing the
destinations of the network packets sent from the IoT devices.

The multidimensional traffic patterns extracted from the
smart home network traffic have enabled many innovative ap-
plications such as device classification and anomaly detection.
A recent study [25] notices that unencrypted information in the
headers of the broadcasting and multicasting DHCP, SSDP,
and mDNS messages sent out by IoT devices can be used
to uniquely identify IoT device models. IoT SENTINEL [12],
on the other hand, proposes a device type identification frame-
work by building up fingerprints of each device type.

Recent studies on packet-level network traffic analysis have
shown that it is possible to extract the concrete IoT device
event logs. HoMonit [26] focuses on the Samsung’s Smart-

Things platform to study encrypted wireless network traffic
at the data link layer of IoT devices and analyze the mobile
apps to infer the device events. Pingpong [19] identifies the
request and reply communication patterns of IoT devices’
network traffic, which helps to build up accurate signatures
of IoT device events. Then state transition machines are
applied by [19] for detecting the device event signatures in
the collected network traffic trace. IoTAthena [21] further
pinpoints the important inter-packet time interval feature in the
device event signatures and designs a time-sensitive signature
matching algorithm for efficient device event extraction.

With the availability of accurate device event logs from
the smart home network traffic as well as the knowledge of
device deployment information, some research efforts have
been devoted to addressing the user activity inference problem.
For example, Peek-a-Boo [1] first extracts the IoT device
model and device state information from the sniffed wireless
traffic, and then trains a Hidden Markov Model (HMM) with
these features for inferring simple user activities involving
a limited number of IoT devices. IoTMosaic [22] generates
signatures for diverse user activities that are crucial to home
safety, which consist of sequences of IoT device events.
IoTMosaic [22] then designs efficient approximate matching
algorithms to address the missing or out-of-order device events
problems during the user activity inference. A recent work [24]
formally defines the Events to Activities (E2A) and Events to

Activity Patterns (E2AP) problems and proposes a two-phase
scheme where Phase 1 applies the AKMatch algorithm to
compute a small number of representative matches of user
activity patterns which facilitate faster processing without
losing critical information. An unsupervised machine learning
algorithm is designed and implemented by [24] in Phase 2 to
match a compatible set of user activity patterns with optimized
total weights in a finite number of iterations which is described
in detail in Section 2.

Our work focuses on the user activity inference problem
by identifying the challenges and limitations of the existing
solutions. In particular, we point out that both [22] and [24]
have poor performances when dealing with the ambiguities in
user activity patterns and do not consider the important activity
duration information. Subsequently, we highlight the opportu-
nities in addressing these challenges and propose an extended
framework with consideration of potential user activity pattern
ambiguities and duration limitations and apply it to a digital
forensics application.

7. CONCLUSIONS AND FUTURE WORKS

In this paper, we first pinpoint the challenges in inferring user
activities from IoT device events faced by existing solutions
and then analyze the root causes of their poor performances
when applied to certain types of user activity patterns and
device event sequences. We then explore the opportunities
for extracting useful information even with the existence of
ambiguities in user activity patterns. We propose an extension
based on the state-of-the-art algorithm and then apply it
to a digital forensics application. Our Future work will be
centered on evaluating our solution with datasets generated in
different smart home environments as well as exploring more
approaches to tackle the challenges in user activity inference.

REFERENCES

[1] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen,
H. Aksu, M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-
Boo: I see your smart home activities, even encrypted!” in Proc.
of ACM WiSec, 2020.

[2] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “SoK:
Security evaluation of home-based IoT deployments,” in Proc.
of IEEE S&P, 2019.

[3] S. Birnbach, S. Eberz, and I. Martinovic, “Peeves: Physical
event verification in smart homes,” in Proc. of ACM CCS, 2019.

[4] W. Ding and H. Hu, “On the safety of IoT device physical
interaction control,” in Proc. of ACM CCS, 2018.

[5] W. Ding, H. Hu, and L. Cheng, “IOTSAFE: Enforcing safety
and security policy with real IoT physical interaction discov-
ery,” in Proc. of NDSS, 2021.

[6] C. Fu, Q. Zeng, and X. Du, “HAWatcher: Semantics-aware
anomaly detection for appified smart homes,” in Proc. of
USENIX Security, 2021.

[7] S. Hui, H. Wang, D. Xu, J. Wu, Y. Li, and D. Jin, “Distinguish-
ing between smartphones and IoT devices via network traffic,”
IEEE Internet of Things Journal, vol. 9, pp. 1182–1196, 2022.

[8] H. Jafari, O. Omotere, D. Adesina, H.-H. Wu, and L. Qian,
“IoT devices fingerprinting using deep learning,” in Proc. of
IEEE MILCOM, 2018.

[9] Y. Jia, L. Xing, Y. Mao, D. Zhao, X. Wang, S. Zhao, and
Y. Zhang, “Burglars’ IoT paradise: Understanding and miti-

gating security risks of general messaging protocols on IoT
clouds,” in Proc. of IEEE S&P, 2020.

[10] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich,
D. Kuznetsov, R. Gupta, and Z. Durumeric, “All things consid-
ered: An analysis of IoT devices on home networks,” in Proc.
of USENIX Security, 2019.

[11] X. Ma, J. Qu, J. Li, J. C. Lui, Z. Li, and X. Guan, “Pinpointing
hidden IoT devices via spatial-temporal traffic fingerprinting,”
in Proc. of IEEE INFOCOM, 2020.

[12] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi,
and S. Tarkoma, “IoT SENTINEL: Automated device-type
identification for security enforcement in IoT,” in Proc. of IEEE
ICDCS, 2017.

[13] P. Morgner, S. Mattejat, Z. Benenson, C. Müller, and
F. Armknecht, “Insecure to the touch: Attacking ZigBee 3.0
via touchlink commissioning,” in Proc. of ACM WiSec, 2017.

[14] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni,
N. Asokan, and A.-R. Sadeghi, “DÏoT: A federated self-learning
anomaly detection system for IoT,” in Proc. of IEEE ICDCS,
2019.

[15] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun,
and H. Haddadi, “Information exposure from consumer IoT
devices: A multidimensional, network-informed measurement
approach,” in Proc. of ACM IMC, 2019.

[16] E. Ronen, C. O’Flynn, A. Shamir, and A.-O. Weingarten, “IoT
goes nuclear: Creating a ZigBee chain reaction,” in Proc. of
IEEE S&P, 2017.

[17] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wi-
jenayake, A. Vishwanath, and V. Sivaraman, “Classifying IoT
devices in smart environments using network traffic character-
istics,” IEEE Transactions on Mobile Computing, vol. 18, pp.
1745–1759, 2018.

[18] V. Sivaraman, D. Chan, D. Earl, and R. Boreli, “Smart-phones
attacking smart-homes,” in Proc. of ACM WiSec, 2016.

[19] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Dem-
sky, “PingPong: Packet-level signatures for smart home device
events,” in Proc. of NDSS, 2019.

[20] Y. Wan, K. Xu, F. Wang, and G. Xue, “Characterizing and
mining traffic patterns of IoT devices in edge networks,” IEEE
Transactions on Network Science and Engineering, vol. 8, pp.
89–101, 2021.

[21] Y. Wan, K. Xu, F. Wang, and G. Xue, “IoTAthena: Unveiling
IoT device activities from network traffic,” IEEE Transactions
on Wireless Communications, vol. 21, pp. 651–664, 2022.

[22] Y. Wan, K. Xu, F. Wang, and G. Xue, “IoTMosaic: Inferring
user activities from IoT network traffic in smart homes,” in
Proc. of IEEE INFOCOM, 2022.

[23] A. Wang, A. Mohaisen, and S. Chen, “XLF: A cross-layer
framework to secure the Internet of Things (IoT),” in Proc.
of IEEE ICDCS, 2019.

[24] G. Xue, Y. Wan, X. Lin, K. Xu, and F. Wang, “An effective
machine learning based algorithm for inferring user activities
from IoT device events,” IEEE JSAC Series on Machine Learn-
ing for Communications and Network, 2022, accepted.

[25] L. Yu, B. Luo, J. Ma, Z. Zhou, and Q. Liu, “You are what
you broadcast: Identification of mobile and IoT devices from
(public) WiFi,” in Proc. of USENIX Security, 2020.

[26] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu,
“HoMonit: Monitoring smart home apps from encrypted traf-
fic,” in Proc. of ACM CCS, 2018.

[27] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu,
and Y. Zhang, “Discovering and understanding the security
hazards in the interactions between IoT devices, mobile apps,
and clouds on smart home platforms,” in Proc. of USENIX
Security, 2019.

