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Abstract—Recent advances in space quantum communications
envision Low Earth Orbit (LEO) satellites for global entangle-
ment distribution. Entanglement distribution in such a network
requires considerations such as satellite mobility, ground station
mobility due to the Earth’s rotation, inter-satellite links, and
multiple orbital shells, all of which have not been thoroughly
studied in the networking literature. We ameliorate this deficit
by defining a system model which accounts for all of the
aforementioned factors. Using this system model, we formulate
the dynamic optimal entanglement distribution (DOED) problem.
We convert the DOED problem in a dynamic physical network to
an instance of the problem in a static logical graph, the latter
of which can be used to solve the former. We obtain a reduced
logical graph from a logical graph, which can be used to reduce
the complexity of solving the DOED problem. We propose two
polynomial-time greedy algorithms for computing entanglement
paths, as well as an integer linear programming (ILP)-based
algorithm as a benchmark. We present evaluation results to
demonstrate the advantages of our model and algorithms.

1. INTRODUCTION

Low Earth Orbit (LEO) satellites offer a promising vehicle
for global entanglement distribution [3], [8], [12], as they
enable us to place repeaters, which facilitate end-to-end en-
tanglement between two remote parties [13], in space. Under
this architecture [4], [7], LEO satellites are partitioned into
two categories based on their functionality: (1) entanglement
sources, and (2) repeaters. Satellites of type (1) generate
entangled photon pairs using entangled photon sources (EPSs)
and transmit them to repeaters, while satellites of type (2) are
armed with quantum non-demolition (QND) measurement de-
vices and quantum memories (QMs) to perform entanglement
swapping [2]. Ground stations carry QND and QM equipment
as satellites of type (2) do. We henceforth refer to type (1)
satellites as EPS satellites and type (2) satellites as QND-QM
satellites. EPS satellites rely on downlink channels to transmit
photons to ground stations and inter-satellite links to transmit
photons to QND-QM satellites [12].

Distributing two-party entangled quantum states, or ebits,
to two remote parties on Earth by way of satellites is far
from a trivial task. The dynamic nature of the network due to
satellite mobility and the Earth’s rotation means the feasibility
of photon transmission varies with time. If an EPS satellite
generates an entangled photon pair and wishes to transmit
these photons to two parties, which may be ground stations
and/or QND-QM satellites, the EPS satellite must be within
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communication range of both parties, which may be the case
at one point in time, but not the case at another point in time.

Existing works on satellite-based entanglement distribution
from a networking perspective include [1], [6], [9], [11],
[14]. The work in [14] considers satellite mobility and allows
entanglement distribution along inter-satellite links, but studies
a small-scale example consisting of a chain of three satellites
connecting two ground stations. The system model defined
in [9] does not consider satellite and ground station mobility,
while the system model defined in [6] does. Both [6] and [9]
distribute entanglement exclusively using the double downlink
configuration, in which an EPS satellite beams down an
ebit to two ground stations, and do not permit entanglement
distribution along inter-satellite links. The system models in
both [1] and [11] take into account satellite mobility as well as
entanglement distribution along inter-satellite links. All of [1],
[5], [6], [11] assume constellations comprising equally spaced
rings (circular orbits) of satellites in polar orbits, all at a single
fixed altitude, akin to Iridium; while instrumental, current
LEO satellite constellations like Starlink and Project Kuiper
highlight the need to study entanglement distribution using
constellations featuring inclined orbits.

To the best of our knowledge, a space-based entanglement
distribution system model which incorporates satellite move-
ment over time, ground station movement over time due to
the Earth’s rotation, inter-satellite links, and multiple orbital
shells in inclined orbits at varying altitudes is absent in the
literature. The main contributions of this paper are as follows.

• We propose a system model of an LEO satellite-based
quantum network which considers satellite movement
over time, ground station movement over time due to
the Earth’s rotation, entanglement distribution along inter-
satellite links, and multiple orbital shells in inclined orbits
at varying altitudes, with which we define the dynamic
optimal entanglement distribution (DOED) problem.

• We expand on the concept of logical graphs as described
in [1], which constructs the static logical graph corre-
sponding to a dynamic physical network, by introducing
the concept of a reduced logical graph, which we obtain
from a given logical graph and can be used to reduce the
complexity of solving the DOED problem.

• We design two polynomial-time greedy algorithms for
solving the DOED problem.

• We conduct extensive performance evaluation to demon-
strate the advantage of our system model and proposed
algorithms, using an integer linear programming (ILP)-
based algorithm as a baseline against which we study the
performance of our greedy algorithms.



2. SYSTEM MODEL

A. Physical System Definition

Together, LEO satellites and ground stations form the nodes
of our physical network. While both QND-QM satellites
and ground stations are equipped with the same hardware,
we restrict entanglement swapping operations to QND-QM
satellites so as to entirely eschew ground repeaters. If two
ground stations Alice and Bob demand entanglement, we
service their request solely using satellites. If a single EPS
satellite is within communication range of both Alice and Bob,
then the EPS satellite may transmit an ebit to the two parties.
However, if the distance between Alice and Bob exceeds the
communication range of a single EPS satellite, we require
assistance from both EPS satellites and QND-QM satellites.

In this case, a chain of EPS satellites and QND-QM
satellites in alternating order, with EPS satellites comprising
the end nodes, can facilitate end-to-end entanglement between
Alice and Bob. Each of the endmost EPS satellites distributes
an ebit to one of Alice and Bob as well as a QND-QM satellite,
while all other EPS satellites distribute ebits to two QND-QM
satellites. The QND-QM satellites then perform entanglement
swapping on their respective photons in QMs to extend en-
tanglements as needed until Alice and Bob directly share an
ebit. This approach uses the double downlink configuration,
downlink/inter-satellite links, and double inter-satellite links.

We rely on a three-dimensional Cartesian coordinate system
to define our physical network. The center of the Earth cor-
responds with the origin, the North and South poles form the
positive and negative z-axes, respectively, and the equatorial
plane coincides with the xy-plane. We assume the Earth is a
sphere of radius Re = 6371 km and takes 24 hours to complete
a single rotation around the z-axis.

Our satellite constellation has L orbital shells. Each orbital
shell l = 0, 1, . . . , L − 1 comprises Rl rings, with each ring
containing Kl satellites. Each ring is in inclined orbit, wherein
every ring in an orbital shell l forms a nonzero angle γl with
the equatorial plane, where 0 ≤ γl ≤ π/2 is in radians.

A satellite Sl,r,k is identified by its orbital shell l =
0, 1, . . . , L − 1, its ring r = 0, 1, . . . , Rl − 1, and its index
in the corresponding ring k = 0, 1, . . . ,Kl − 1. All satellites
in orbital shell l have the same altitude hl (given in kilometers)
and the same orbital period Pl (given in hours).

Say M ground stations populate our physical network, and
they are indexed gi, i = 0, 1, . . . ,M − 1. A ground station
gi is identified by its latitude ϕi, −π/2 ≤ ϕi ≤ π/2, and its
longitude λi, −π ≤ λi ≤ π, both given in radians.

Each EPS satellite has a number of transmitters, while each
QND-QM satellite/ground station has a number of receivers
and QMs. The number of transmitters at a node restricts the
number of ebits it can simultaneously transmit, while the
number of receivers and QMs at a node restricts the number
of ebits it can simultaneously receive and store, respectively.
An EPS satellite can generate an ebit and use a transmitter
to transfer a photon to a QND-QM satellite/ground station
that is within communication range. The recipient node can

then accept the photon using a receiver and store it in a QM.
Successful photon transmission is heralded by the recipient
node’s QND measurement device.

Fig. 1 shows an example of the physical system we study.

SatelliteGround Station

Fig. 1. An example of the type of network we study with 1 orbital shell
comprising 6 rings and 6 satellites per ring.

B. Node Coordinates as a Function of Time

To define the position of satellite Sl,r,k at time t (in hours),
let orbital shell l, 0 ≤ l ≤ L − 1, be arbitrary but fixed.
We define a constant αl,r,k = 2π

Kl
× k (r = 0, 1, . . . , Rl −

1, k = 0, 1, . . . ,Kl − 1) to equally distribute the Kl satellites
on ring r = 0, 1, . . . , Rl − 1 in orbital shell l. We define
another constant βl,r = 2π

Rl
× r (r = 0, 1, . . . , Rl − 1) to

equally distribute the Rl inclined rings in l around the z-axis.
Let a ring of radius Rl = Re + hl lie on the xy-plane.

Then the position of Sl,r,k at time t is initially defined
by u⃗l,r,k(t) = Rl(cos (

2πt
Pl

+ αl,r,k), sin (
2πt
Pl

+ αl,r,k), 0)
T.

Rotate vector u⃗l,r,k(t) counterclockwise around the x-axis
by γl radians using the rotation matrix Rx(γl) in order
to obtain the desired inclined orbit. Using the coordinates
produced by the matrix operation Rx(γl) u⃗l,r,k(t), rotate
them counterclockwise around the z-axis according to the
corresponding ring r using the rotation matrix Rz(βl,r).
Altogether, the position of satellite Sl,r,k at time t is computed
as s⃗l,r,k(t) = Rz(βl,r)Rx(γl)u⃗l,r,k(t).

To define the position of ground station gi at time t, let i
be arbitrary but fixed. Given gi’s latitude ϕi and longitude λi,
the position of gi at time t is initially defined by v⃗l,r,k(t) =
Re(cosϕi cosλi, cosϕi sinλi, sinϕi)

T. We depict the rotation
of the Earth (counterclockwise around the z-axis) using the
rotation matrix Rz(

πt
12 ). Altogether, the position of ground

station gi at time t is computed as g⃗i(t) = Rz(
πt
12 )v⃗l,r,k(t).

C. Distance Between Two Nodes

The problem we study requires the Euclidean distance between
two nodes, in particular the distance between two satellites as
well as the distance between a satellite and a ground station.
Let d(t) denote the Euclidean distance between satellites Sl,r,k

and Sl′,r′,k′ at time t. Let f(t) denote the Euclidean distance
between satellite Sl,r,k and ground station gi at time t. Our
problem study requires us to compute maxt∈[τ,τ+δ] d(t) and
maxt∈[τ,τ+δ] f(t). We accomplish this end using approxima-
tion.



3. MODELING DOED PROBLEM WITH LOGICAL GRAPHS

A. Problem Formulation for Dynamic Physical Networks
The entanglement distribution problem we study entails deliv-
ering ebits to ground station pairs within a given time interval
[τ, τ + δ] by way of satellite-assisted entanglement paths. Say
we are given N connection requests R = {r0, r1, . . . , rN−1},
all of which demand service as a batch within [τ, τ + δ]. We
define a connection request ri, i = 0, 1, . . . , N−1, as a 4-tuple
(si, ti, di, wi), where si is the source node (a ground station),
ti is the destination node (another ground station), di is the
non-negative integer demand which quantifies the number of
ebits si and ti wish to share, and wi is the non-negative real
weight associated with this request.

Successfully serving request ri requires finding an si-ti path
πi satisfying: (1) if the constituent nodes of πi are si, v0, v1,
v2, v3, · · · , vh−3, vh−2, vh−1, vh, ti, then v0, v2, . . . , vh−2, vh
are EPS satellites, while v1, v3, . . . , vh−3, vh−1 are QND-QM
satellites; and (2) all of the constituent nodes of πi have
sufficient transmitters/receivers/QMs to support demand di.

Let R′ be a subset of the connection requests R. We say
R′ is feasible if (1) we can find a path πi with sufficient
transmitters/receivers/QMs to serve every ri ∈ R′ on the
entire time interval [τ, τ + δ], and (2) for any two requests
ri, rj ∈ R′, i ̸= j, paths πi and πj do not share any
transmitters/receivers/QMs. The total weight for serving a
feasible R′ ⊆ R is w(R′) =

∑
ri∈R′ wi. The Dynamic

Optimal Entanglement Distribution (DOED) problem seeks
to find a feasible subset Ropt of R with maximum total weight.

B. Problem Formulation for Static Logical Graph
To solve the DOED problem, we construct a static logical graph
corresponding to a given set of connection requests R from the
dynamic physical network. We differentiate our logical graph
from that in [5] by defining ours such that a node in our
logical graph does not have a physical location, while a node
in a logical graph defined using [5] has a physical location in
that it may correspond to different satellites at different times.

Given R and [τ, τ + δ], we construct the corresponding
logical graph G = (V,E) as follows. For each node z
(satellite/ground station) in the physical network, there is a
corresponding vertex l(z) in the logical graph. We use the
notation l(z) to indicate that node z in the physical network
corresponds to vertex l(z) in the logical graph. For each vertex
v in the logical graph, there is a corresponding node p(v) in
the physical network. We use the notation p(v) to indicate that
vertex v in the logical graph corresponds to node p(v) in the
physical network.

Let C0 > 0 be the inter-satellite communication range and
let C1 > 0 be the satellite-ground station communication range
(both in kilometers). The constant C0 denotes the maximum
Euclidean distance at which an EPS satellite may beam a
photon to a QND-QM satellite, while the constant C1 denotes
the maximum Euclidean distance at which an EPS satellite
may beam a photon to a ground station.

We define the following two criteria to determine whether
an edge exists between two vertices in the logical graph:

1) Let satellites Sl,r,k and Sl′,r′,k′ be arbitrary but fixed.
Let z and z′ denote Sl,r,k and Sl′,r′,k′ in the physical
network, respectively. If maxt∈[τ,τ+δ] d(t) ≤ C0, then
vertices l(z) and l(z′) share an undirected edge in the
logical graph.

2) Let satellite Sl,r,k and ground station gi be arbitrary but
fixed. Let z and z′ denote Sl,r,k and gi in the physical
network, respectively. If maxt∈[τ,τ+δ] f(t) ≤ C1, then
vertices l(z) and l(z′) share an undirected edge in the
logical graph.

We condense the two aforementioned criteria into a single
criterion: For two vertices u, v ∈ V , there is an undirected
edge (u, v) ∈ E if and only if the maximum distance
between p(u) and p(v) in the interval [τ, τ + δ] is within
the communication range of p(u) and p(v). If (u, v) ∈ E is
an edge in the logical graph, we are guaranteed that p(u) and
p(v) are within each other’s communication range in the entire
interval [τ, τ + δ]. The number of transmitters/receivers/QMs
at vertex v ∈ V is the same as in p(v).

Note that an edge (u, v) ∈ E in the logical graph may only
exist between an EPS satellite and a QND-QM satellite/ground
station in the physical network due to their hardware. For two
nodes in the physical network to be able to share an ebit
(and hence share an edge in the logical graph), we require
transmitters at one node and receivers/QMs at the other node.

The bandwidth of edge (u, v) ∈ E is the number of ebits
p(u) and p(v) can simultaneously support. If p(u) is an EPS
satellite and p(v) is a QND-QM satellite/ground station, then
the bandwidth of (u, v) ∈ E is the minimum of the number of
transmitters at p(u), the number of receivers at p(v), and the
number of QMs at p(v). If p(v) is an EPS satellite and p(u)
is a QND-QM satellite/ground station, then the bandwidth of
(u, v) ∈ E is the minimum of the number of transmitters at
p(v), the number of receivers at p(u), and the number of QMs
at p(u).

Now that we have established that the notion of a logical
graph is well-defined, we relax our definition of feasibility
from Section 3-A as follows. Let R′ be a subset of the
connection requests R. We say R′ is feasible if (1) we
can find a path πi with sufficient transmitters/receivers/QMs
to serve every ri ∈ R′, and (2) for any two requests
ri, rj ∈ R′, i ̸= j, paths πi and πj do not share any
transmitters/receivers/QMs. The total weight for serving a
feasible R′ ⊆ R is w(R′) =

∑
ri∈R′ wi. Our relaxation

manifests in criterion (1) in that we no longer have to consider
whether the constituent links of a path πi are operational in
the entire time interval [τ, τ + δ], because the logical graph
representation of the physical network frees us from this
concern.

We henceforth study the DOED problem using our newly
relaxed definition of a feasible R′ ⊆ R.

C. Reduced Logical Graph

The number of edges in the logical graph can approach
the order of O((

∑L−1
l=0 RlKl + M)2), potentially making

the logical graph prohibitively expensive in terms of time



complexity for the DOED problem. To ease the computational
burden on our end, we introduce the notion of a reduced
logical graph, which is a subgraph of the logical graph.

Given the logical graph corresponding with a set of con-
nection requests R and time interval [τ, τ + δ], we construct
the reduced logical graph by pruning vertices and edges from
the logical graph using the following criteria.

1) Given a ground station z, if for any connection request
ri ∈ R, i = 0, 1, . . . , N − 1, z is not source node si
or destination node ti, we eliminate vertex l(z) and any
incident edges from the logical graph.

2) Given a satellite/ground station z, if for any connection
request ri ∈ R, i = 0, 1, . . . , N − 1, there exists no si-
z path or z-ti path with sufficient transmitters/receiver-
s/QMs to support the demand di, we eliminate vertex
l(z) and any incident edges from the logical graph.

4. COMPUTING OPTIMAL ENTANGLEMENT DISTRIBUTION

A. ILP-Based Optimal Algorithm
We first design an Integer Linear Programming (ILP)-based
algorithm that always computes the optimal entanglement dis-
tribution strategy. This can be used as a baseline in evaluation.

For each connection request ri ∈ R, i = 0, 1, . . . , N − 1,
define a binary indicator variable

χi =

{
1 if we serve connection request ri,
0 if we do not serve connection request ri.

(1)

If χi = 1, the transmitters/receivers/QMs corresponding to an
si-ti path πi of bandwidth di are assigned to serve ri.

Given the reduced logical graph, say u ∈ V is an EPS
satellite p(u) in the physical network with Tu transmitters,
while v ∈ V is a QND-QM satellite/ground station p(v) in the
physical network with Rv receivers and Qv QMs. We partition
the vertices V of the reduced logical graph as follows: V =
S1 ∪ S2 ∪ G, where S1 denotes the EPS satellites, S2 denotes
the QND-QM satellites, and G denotes the ground stations in
the physical network. Using the indicator variables defined in
Eq. (1) along with the newly defined set partition for V , we
encapsulate the DOED problem as follows:

Objective: maximize
N−1∑
i=0

wi · χi (2)

subject to the following constraints:
χi ∈ {0, 1}, ∀i = 0, 1, . . . , N − 1 (3)
N−1∑
i=0

2 · di · χi ≤ Tz , ∀z ∈ S1 and z in πi (4)

N−1∑
i=0

di · χi ≤ min{Rz , Qz}, ∀z ∈ G and z = si or ti (5)

N−1∑
i=0

2 · di · χi ≤ min{Rz , Qz}, ∀z ∈ S2 and z in πi (6)
and z ̸= si and z ̸= ti

To formulate the actual ILP-based optimal algorithm, we
rely on entanglement flow as described in [10] to perform
path computation. For each edge (u, v) ∈ E in the reduced
logical graph, we define 2× |E| binary indicator variables:

fi(u, v) =

{
1 if ri uses edge (u, v) ∈ E,

0 if ri does not use edge (u, v) ∈ E,
(7)

and
fi(v, u) =

{
1 if ri uses edge (v, u) ∈ E,

0 if ri does not use edge (v, u) ∈ E.
(8)

For ri ∈ R, i = 0, 1, . . . , N − 1, we use fi(u, v) to quantify
the amount of type-i flow from u to v and use fi(v, u) to
quantify the amount of type-i flow from v to u.

Using the indicator variables defined in Eqs. (7) and (8),
the overarching problem we seek to solve may be formulated
as the following ILP problem:

Objective: maximize
N−1∑
i=0

wi · χi (9)

subject to the following constraints:
χi ∈ {0, 1}, ∀i = 0, 1, . . . , N − 1 (10)
fi(u, v) ∈ {0, 1}, ∀(u, v) ∈ E, i = 0, 1, . . . , N − 1 (11)∑
(si,v)∈E

fi(si, v)−
∑

(u,si)∈E

fi(u, si) = χi, ∀i = 0, 1, . . . , N − 1 (12)

∑
(u,ti)∈E

fi(u, ti)−
∑

(ti,v)∈E

fi(ti, v) = χi, ∀i = 0, 1, . . . , N − 1 (13)

∑
(u,z)∈E

fi(u, z) =
∑

(z,v)∈E

fi(z, v),

∀i = 0, . . . , N − 1, z ∈ V, z ̸= si and z ̸= ti (14)
N−1∑
i=0

∑
(u,z)∈E

2 · di · fi(u, z) ≤ Tz , ∀z ∈ S1 (15)

N−1∑
i=0

∑
(z,v)∈E

di · (fi(z, v) + fi(v, z)) ≤ min{Rz , Qz},

∀z ∈ G and z = si or ti (16)
N−1∑
i=0

∑
(z,v)∈E

di · (fi(z, v) + fi(v, z)) ≤ min{Rz , Qz},

∀z ∈ S2 and z ̸= si and z ̸= ti (17)
Algorithm 1: W2D

Input: Logical graph G(V,E) and the set of connection requests R
Output: A feasible subset RW2D of R and the service path πi for

each ri ∈ RW2D

1 Sort the requests in R in non-increasing order of wi
di

. WLOG,
assume that w0

d0
≥ w1

d1
≥ · · · ≥ wN−1

dN−1
;

2 RW2D ← ∅;
3 for i := 0 to N − 1 do
4 Compute an si-ti path πi of bandwidth at least di;
5 Set πi ← NULL if such a path does not exist;
6 if πi ̸= NULL then
7 Add ri to RW2D ;
8 Reserve the resources needed for path πi;
9 Update graph G to its residual graph by removing the

resources needed for path πi;

10 Output RW2D and {πi|ri ∈ RW2D}.

B. Polynomial-Time Greedy Algorithms

Our greedy algorithms are presented in Algorithms 1 and 2.
Algorithm 1 considers the requests in non-increasing order
of the weight-to-demand ratio. Algorithm 2 considers the re-
quests in non-increasing order of the weight-to-resources ratio.
We quantify the resources required to satisfy a connection
request ri as the number of hops in a shortest si-ti path
πi of bandwidth di (if such a path exists) multiplied by the
bandwidth demand di. In both algorithms, whenever a request
ri can be served, the transmitters/receivers/QMs corresponding
to the respective path πi are reserved for ri, and the available
resources in the logical graph are updated accordingly.



Algorithms 1 and 2 each has a worst-case time complexity
bounded by a lower-order polynomial. For Algorithm 1, after
sorting, the main steps consist of N path finding processes.
For Algorithm 2, the main steps consist of O(N2) path finding
processes. While these algorithms are not guaranteed to find
an optimal solution, they are very fast, and can find close
to optimal solutions in most cases, as demonstrated in our
evaluation results.
Algorithm 2: W2R

Input: Logical graph G(V,E) and the set of connection requests R
Output: A feasible subset RW2R of R and the service path πi for

each ri ∈ RW2R

1 RW2R ← ∅;
2 while TRUE do
3 ratio← −∞; index← −∞;
4 for i := 0 to N − 1 do
5 if ri ̸∈ RW2R then
6 Compute an si-ti path πi of bandwidth at least di;
7 Set πi ← NULL if such a path does not exist;
8 if πi ̸= NULL then
9 resources← (hop count of πi)× di;

10 if wi/resources > ratio then
11 ratio← wi/resources; index← i;

12 if ratio ̸= −∞ then
13 Add rindex to RW2R;
14 Reserve the resources needed for path πindex;
15 Update graph G to its residual graph by removing the

resources needed for path πindex;
16 else
17 break

18 Output RW2R and {πi|ri ∈ RW2R}.

5. PERFORMANCE EVALUATION

In this section, we present the evaluation results. The evalua-
tion was done on a workstation running Ubuntu 22.04 system
with i9-12900 CPU and 64GB memory. ILP instances were
solved using the Gurobi optimizer.

A. Evaluation Settings

Physical Network: We use 60 ground stations, each located in
a major city in the world. The satellite constellation contains
L = 1 or 2 orbital shells. The first shell has an altitude of
550 km, an incline angle of 53°, and an orbital period of
1.5917 hrs. The second shell has an altitude of 570 km, an
incline angle of 70°, and an orbital period of 1.5986 hrs. These
parameters are drawn from the Starlink constellation. For each
orbital shell, R = K ∈ {10, 20}. In a given ring, the EPS
satellites and QND-QM satellites are arranged in alternating
order. We take the inter-satellite communication range to be
3000 km and the satellite-ground station communication range
to be 2000 km. The number of transmitters/receivers/QMs at
a node is an integer between 5 and 10.
Connection Requests: The number of connection requests is
N = 10 or 20. The source and destination nodes in each
request are chosen from the 60 ground stations. The demand
and weight for each request are integers between 1 and 5. We
always take the start time to be τ = 0 (midnight). We describe
our choice of time interval length δ in Section (5-B).

B. Evaluation Scenarios

(i) In this scenario, we study 3 cases. In the first case, we let
L = 1, R = K = 10. In the second case, we let L = 1, R =
K = 20. In the third case, we let L = 2, R = K = 20.
For each case, we generate 10 different sets of connection
requests, each containing 20 requests where the source and
destination nodes are randomly chosen from the 60 ground
stations. The demand and weight for each request are random
integers between 1 and 5. In all 3 cases, we let δ vary from
0.00 to 0.20 in increments of 0.01. This scenario is intended to
study the impact of δ (for fixed L,R,K) in terms of average
total weight.
(ii) In this scenario, we study 3 cases. In the first case, we let
L = 1, δ = 0.01. In the second case, we let L = 1, δ = 0.1.
In the third case, we let L = 2, δ = 0.1. For each case,
we generate 10 different sets of connection requests, each
containing 20 requests, which are defined analogously as those
in scenario (i). In all 3 cases, we let R = K vary from 1 to
20 in increments of 1. This scenario is intended to study the
impact of R and K (for fixed L, δ) in terms of average total
weight.
(iii) In this scenario, we study 12 cases. With R,K = 10
fixed, for each value of N = 10, 20, L = 1, 2, and
δ = 0.1, 0.01, 0.001, we generate 100 different sets of con-
nection requests: RN

1 ,RN
2 , . . . ,RN

100. Each RN
j contains N

connection requests where the source and destination nodes
are randomly chosen from the 60 ground stations, and the
demand and weight are random integers between 1 and 5.
This scenario is intended to evaluate the performance of the
proposed greedy algorithms in terms of average running time
for both the unreduced and reduced logical graphs, where the
average is taken over RN

j , j = 1, . . . , 100.

C. Evaluation Results

We present our evaluation results, along with our observations
and analysis. We use ILP, W2D, and W2R to denote the ILP-
based algorithm, Algorithm 1, and Algorithm 2, respectively.
Scenario (i): Fig. 2 illustrates the results of Scenario (i).
Fig. 2(a) shows the impact of the value of δ on the total weight
for L = 1 and R = K = 10. Fig. 2(b) shows the impact of
the value of δ on the total weight for L = 1 and R = K = 20.
Fig. 2(c) shows the impact of the value of δ on the total weight
for L = 2 and R = K = 20. In all three sub-figures, the total
weight computed by all three algorithms is non-increasing as
the value of δ increases. This is because as the value of δ
increases, fewer links will remain operational on [τ, τ + δ],
and so the number of edges in the logical graph decreases.
Despite this correlation, the value of δ beyond which servicing
connection requests is no longer feasible is negligible in real-
world implementations. For example, the maximum value of
δ in Fig. 2 is 0.05 hours, or 3 minutes, which is ample time
to establish an entanglement between two users in a quantum
internet [8]. All three sub-figures show that the total weight
computed by W2D and W2R is often suboptimal compared to
that computed by ILP, but the greedy algorithms sacrifice
optimality for efficiency, as mentioned in Section 4-B.
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(c) L = 2, R = K = 20
Fig. 2. Performance of ILP, W2D, and W2R with varying values of δ.
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Fig. 3. Performance of ILP, W2D, and W2R with varying values of R,K.

Scenario (ii): Fig. 3 illustrates the results of Scenario (ii).
Fig. 3(a) shows the impact of the value of R = K on the total
weight for L = 1 and δ = 0.01. Fig. 3(b) shows the impact
of the value of R = K on the total weight for L = 1 and
δ = 0.1. Fig. 3(c) shows the impact of the value of R = K
on the total weight for L = 2 and δ = 0.1. We see that in
all three sub-figures, the total weight computed by all three
algorithms is non-decreasing (with some fluctuations) as the
value of R = K increases. The fluctuations can be attributed
to the fact that as the value of R = K increases, the number
of edges in the logical graph does not necessarily increase as
well. This is because the total weight is only guaranteed to be
non-decreasing when R (and K) is increased to n × R (and
m × K) for any integers n ≥ 1 (and m ≥ 1). Increasing R
(and K) to a multiple of itself produces a supergraph, or a
“refinement”, of the original logical graph. Fig. 3 illustrates
this idea of refinement for R = K = 5, 10, and 20.

TABLE 1
AVERAGE RUNNING TIME OF ILP, W2D, AND W2R ALGORITHMS.

N L δ
Unreduced Reduced

ILP Time ILP Time W2D Time W2R Time

10

1
0.1 < 0.0001s < 0.0001s < 0.0001s < 0.0001s

0.01 0.0002s 0.0001s < 0.0001s < 0.0001s
0.001 0.0002s 0.0001s < 0.0001s < 0.0001s

2
0.1 0.0001s < 0.0001s < 0.0001s < 0.0001s

0.01 0.0006s 0.0003s < 0.0001s < 0.0001s
0.001 0.0007s 0.0002s < 0.0001s < 0.0001s

20

1
0.1 < 0.0001s < 0.0001s < 0.0001s < 0.0001s

0.01 0.0002s 0.0002s < 0.0001s < 0.0001s
0.001 0.0003s 0.0003s < 0.0001s < 0.0001s

2
0.1 0.0002s < 0.0001s < 0.0001s < 0.0001s

0.01 0.0009s 0.0004s < 0.0001s < 0.0001s
0.001 0.0016s 0.0005s < 0.0001s < 0.0001s

Scenario (iii): Table 1 presents evaluation results for the
average running times for ILP, W2D, and W2R. We observe
that W2D and W2R require much less time than ILP, which
holds true in both the unreduced and reduced logical graphs.
We also observe that in most of the cases, graph reduction
helps to reduce the running time for ILP, W2D, and W2R.

6. CONCLUSION

In this paper, we propose a space-based global entanglement
distribution model which considers satellite mobility, ground
station mobility due to the Earth’s rotation, inter-satellite links,

and multiple orbital shells in inclined orbits. We also propose
a rigorously defined scheme to compute entanglement paths
for a set of connection requests such that all constituent links
are guaranteed to be operational within a given time interval
by obtaining a static logical graph from the dynamic physical
network and then reducing it. We then design two polynomial-
time greedy algorithms for solving the DOED problem.

REFERENCES

[1] A. Chang, Y. Wan, G. Xue, and A. Sen, “Entanglement distribution
in satellite-based dynamic quantum networks,” IEEE Network, vol. 38,
no. 1, 2024.

[2] A. Chang and G. Xue, “Order matters: On the impact of swapping
order on an entanglement path in a quantum network,” in Proc. of IEEE
INFOCOM WKSHPS, 2022.

[3] L. d. F. de Parny, O. Alibart, J. Debaud, S. Gressani, A. Lagarrigue,
A. Martin, A. Metrat, M. Schiavon et al., “Satellite-based quantum
information networks: use cases, architecture, and roadmap,” Communi-
cations Physics, vol. 6, no. 12, 2023.
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L. Mazzarella, M. Krutzik, S. Mohapatra et al., “Advances in space
quantum communications,” IET Quantum Communication, vol. 2, no. 4,
pp. 182–217, 2021.

[13] R. Van Meter, Quantum Networking. John Wiley & Sons, 2014.
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